REVIEW ARTICLE

Novel ion recognition systems based on cyclic and acyclic oligo(salen)-type ligands

Shigehisa Akine

Received: 25 May 2011/Accepted: 27 July 2011/Published online: 27 August 2011 © Springer Science+Business Media B.V. 2011

Abstract This review describes the design of novel ion recognition systems based on salen (H₂salen = N,N'-disalicylideneethylenediamine) or related ligands. The phenoxo groups of the salen-based metallohosts play an important role in the ion recognition because the phenoxo groups can further coordinate to metal ions in a bridging fashion. In particular, the integration of two or more salentype coordination sites in a cyclic fashion is effective for the construction of the metallohosts. They show unique multi-metal complexation behavior and binding selectivities due to the phenoxo-bridged structures. The peripheral salen-type sites are suitable for binding to d-block transition metal ions and the central O_6 (or larger) site is for the group 1-3 metals. Acyclic oligo(salen) molecules are also effective for obtaining metallohosts. The metalation of a bis(salen)-type ligand with d-block metals leads to a trinuclear complex with a C-shaped structure, which can selectively recognize Ca²⁺ and lanthanide(III) ions via a unique metal exchange process. The longer oligo(salen) ligands form a helical structure when they recognize the La^{3+} or Ba^{2+} ion in the presence of the zinc(II) ion. The helix inversion behavior of the helical metal complexes due to the labile character of the coordination bonds is successfully utilized for the dynamic helicity control. The transformation of the acyclic ligand into cyclic ones via olefin metathesis significantly changes the binding selectivity.

Keywords Salen · Transition metal complex · Crown ether · Ion recognition · Helical structure

S. Akine (🖂)

Abbreviations

salen	<i>N</i> , <i>N</i> ′-disalicylideneethylenediamine dianion
saltn	<i>N</i> , <i>N</i> ′-disalicylidene-1,3-diaminopropane dianion
salbn	<i>N</i> , <i>N</i> ′-disalicylidene-1,4-diaminobutane dianion
saloph	N, N'-disalicylidene- o -phenylenediamine dianion
salamo	1,2-Bis(salicylideneaminooxy)ethane dianion

Introduction

 H_2 salamo (R = OCH₂CH₂O)

The salen [1, 2] ligand and its analogues (Chart 1) are versatile and important compounds that have been widely used in coordination chemistry. The salen-type ligands are easily prepared by the condensation of the appropriate salicylaldehyde derivative with diamines. The imine C=N bond formation proceeds quite smoothly by gently heating a solution of the two compounds. Chemical modification of the aldehyde or diamine leads to various kinds of

Chart 1 Salen and related ligands and their complexes. The additional ligand X is omitted in the following charts and schemes

Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan e-mail: akine@chem.tsukuba.ac.jp

Scheme 1 Coordinating ability of [M(salen)] complexes through phenoxo bridging

functionalized salen ligands, which can be used for the synthesis of functional metal complexes. In general, the salen-type ligands coordinate to a transition or typical metal ion as a doubly deprotonated form in a tetradentate fashion. For example, the complexation with nickel(II) [3], copper(II) [3], cobalt(II) [4], etc., affords the square planar complexes, while complexation with zinc(II) [5], iron(III) [6, 7], manganese(III) [8], chromium(III) [9], titanium(IV) [10], etc., yields the penta- or hexacoordinate complexes with additional neutral or anionic ligand(s). A number of salen metal complexes have already been developed to study their structures, reactivities or the fundamental physical properties such as optical or magnetic properties. In addition, there are many functional salen metal complexes; for example, some of the salen-metal complexes show a catalytic activity in organic reactions [11-13] such as epoxidation, act as a model of the catalytic centers of metalloenzymes [14, 15], exhibit nonlinear optical properties [16, 17] or behave as a metallomesogen [18]. The use of the salen complexes as a constituent of supramolecules has currently attracted much attention [19–23].

One of the important features of the metal complexes with salen-type ligands is that these complexes can further be used as a constituent of the oligometallic complexes [24–26]. Although the parent salen ligand and its analogues form a mononuclear complex [M(salen)] with various kinds of metal ions, they also form oligometallic complexes in which the [M(salen)] complex further coordinates to other metal ions. In such a case, the phenoxo groups of the salen ligand play a key role in the formation of the oligometallic structures by bridging two or more metal ions in a μ_2 fashion. This *coordinating ability* of the [M(salen)] units may be utilized as a cation recognition phenomenon. The two phenoxo groups of the [M(salen)] complexes can coordinate to other metal ions in a bidentate fashion in a manner similar to glycol ether, but the coordination ability to the metal ions is much higher (Scheme 1; for details, see below). However, a more sophisticated molecular design is needed to realize the strong and highly selective ion recognition by taking advantage of this coordinating ability of the [M(salen)] complexes to metal ions.

It is well known that simultaneous and synergistic noncovalent interactions result in strong and specific hostguest binding phenomena, even if the individual

Chart 2 Design of cyclic and acyclic oligo(salen) metallohosts for ion recognition

interactions are weak [27]. In this context, the incorporation of a [M(salen)] moiety into a cyclic skeleton or the accumulation of multiple [M(salen)] units in a preorganized fashion would effectively develop a novel metalcontaining ionophore (Chart 2). Such a metal-containing ionophore is expected to show an interplay between the guest species and the metal complex moieties, leading to various kinds of functional host–guest systems [28–41]. Since the d-block metal complex moieties in these metallohosts would basically retain its intrinsic chemical reactivity or physical properties, they are expected to behave as a guest-responding functional molecule whose reactivity or properties can change upon the guest binding. On the other hand, the guest binding would be regulated by the chemical or electrochemical tuning of the metal in the metallohosts.

In this review, the design, synthesis, and complexation behavior of cyclic and acyclic ligands containing one or more salen-type coordination sites (Chart 2) are described. Novel guest recognition systems based on a metal exchange and the unique selectivity regarding their ion recognition behavior are outlined.

Salen complexes as a ligand

As already described, mononuclear salen-metal complexes can coordinate to another metal ion through the negativelycharged phenoxo oxygen donors. For designing salencontaining host molecules, it is important to understand the nature of the *coordinating ability* of the [M(salen)] complexes. In this section, the coordinating behavior of

Scheme 2 Coordinating behavior of [M(salen)] complexes toward a hard metal ion

[M(salen)] complexes of mono(salen)-type ligands is briefly summarized.

When the salen-type ligands form a metal complex, four coordination bonds are newly formed and the two phenoxo oxygen atoms are fixed in a structure suitable for the bidentate chelate coordination to another metal ion (Scheme 2). At the same time, their two phenolic O-H oxygen atoms are converted into more polarized O-M phenoxo oxygen atoms. The electrostatic potential surface obtained by DFT calculation showed that the negative charge of [Ni^{II}salen] complex is mainly distributed on the phenoxo oxygen atoms (Fig. 1). The surface around the phenoxo groups is more negative than those around the phenol groups of the H₂salen or the ether groups of glycol ether. Due to the increased negative charges of the phenoxo groups as well as the structural change, the [M(salen)]-type complexes are more likely to coordinate to another metal ion in a bidentate fashion.

Representative examples of the adduct complexes are the alkali metal adducts of the [M(salen)] (M = Co, Cu,

Fig. 1 Electrostatic potential surface of **a** glyme in a *gauche* conformation, **b** H₂salen, and **c** [Ni^{II}salen] obtained by DFT calculations (B3LYP/6-31G^{**}) using SPARTAN program

Ni) complexes. The reduction of the $[Co^{II}salen]$ complex with elemental sodium afforded a dinuclear complex $[(Co^{I}salen)Na]$ in which the anionic $[Co^{I}salen]^{-}$ unit coordinates to Na⁺ [42–45] (Scheme 3a). The corresponding complexes with Li⁺, K⁺, and Cs⁺ were also isolated using a similar procedure. In contrast, the reaction of $[Co^{II}salen]$ with a sodium salt (NaBPh₄) afforded a trinuclear complex $[(Co^{II}salen)_2Na(thf)_2](BPh_4)$ in which two neutral $[Co^{II}salen]$ units coordinate to Na⁺ [46, 47] (Scheme 3b). In both of these complexes, the phenoxo groups of the [Co(salen)] (Co = Co^I or Co^{II}) units coordinate to Na⁺ in a bidentate fashion.

Similarly, the [M^{II}salen] (M = Cu [48–50], Ni [51, 52]) complexes coordinate to a Na⁺ ion to give trinuclear complexes $[(M^{II}salen)_2Na]^+$ (Chart 3a). The reaction of $[M^{II}salen]$ (M = Ni, Cu, Co) with a smaller Li⁺ ion afforded 1:1 adducts (M^{II}salen)LiX (M = Cu [46], Co [46], Ni [53]), while the larger K⁺ ion can accommodate three [Ni^{II}salen] units to give a tetranuclear complex $[(Ni^{II}salen)_3K]^+$ [51, 54] (Chart 3b). Thus, the structure of

Scheme 3 Bimetallic complexes of salen ligand with cobalt and sodium ions

Chart 3 [M^{II}salen] complexes as ligands for alkali metal ions (Li⁺, Na⁺, K⁺)

Table 1 Stability constants (K_s) of the complexes between

(M_s) of the complexes between	
[Ni ^{II} salen] and cations	NaBPh ₄
	$KBPh_4$
	$CsBPh_4$
	NH₄BPh₄

Determined by spectrophotometric titration at 25 °C in acetonitrile (data cited from Refs. [55, 56])

Guest

EtNH₃BPh₄

Et₂NH₂BPh₄

Et₃NHBPh₄

NEt₄BPh₄

Ks

20

6.3

1.3

 ~ 2

Scheme 4 Equilibrium for the complexation of $[Ni^{II}salen]$ with alkali metal or ammonium guests

the adduct complexes depends on the ionic radius of the alkali metal ions.

The binding of the nickel(II) complex $[Ni^{II}salen]$ toward alkali metal ions in solution was investigated by spectrophotometric titrations (Scheme 4; Table 1) [55]. The stability constants of $[Ni^{II}salen]$ with alkali metal and ammonium ions are in the order of $Na^+ > NH_4^+ >$ $K^+ > Cs^+ > NEt_4^+$, clearly showing the Na^+ selectivity. The $[Ni^{II}salen]$ also forms an adduct complex with alkylammonium salts with the stability constant order of $NH_4^+ > EtNH_3^+ > Et_2NH_2^+ > Et_3NH^+$ [56].

The mononuclear [M^{II}salen] (M = Ni, Cu) complexes can also coordinate to alkaline earth metal ions. Trinuclear complexes [(M^{II}salen)₂G](ClO₄)₂ (Chart 4a) were obtained by the complexation of [M^{II}salen] with G(ClO₄)₂ (M = Cu [50, 57], Ni [58]; G = Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺). In the X-ray crystal structure of [(Ni^{II}salen)₂Ba](ClO₄)₂, the two

Chart 4 Structures of [M^{II}salen] adducts to alkaline earth metal ions

Table 2 Stability constants $(\log K_1, \log K_2)$ for $[(Ni^{II}L)_2G]$ adducts

Guest	[Ni ^{II} L]				
	[Ni ^{II} saloph]	[Ni ^{II} salen]	[Ni ^{II} saltn]		
Mg(ClO ₄) ₂	2.8, 4.9	~6.0, ~5.1	Too large		
Ca(ClO ₄) ₂	3.0, 4.21	3.8, 4.08	Too large		
Sr(ClO ₄) ₂	2.49, 4.08	3.13, 3.72	Too large		
Ba(ClO ₄) ₂	2.45, 4.05	3.09, 3.53	3.68, 3.59		

Determined by spectrophotometric titration at 25 $^{\circ}\mathrm{C}$ in acetonitrile (data cited from Ref. [58])

$$G + [Ni^{II}salen] \xrightarrow{K_1} [(Ni^{II}salen)G]$$
$$[(Ni^{II}salen)G] + [Ni^{II}salen] \xrightarrow{K_2} [(Ni^{II}salen)_2G]$$

[Ni^{II}salen] units coordinate to a Ba²⁺ ion. However, the formation of two kinds of heteronuclear complexes, $[(Ni^{II}salen)G]^{2+}$, then $[(Ni^{II}salen)_2G]^{2+}$ in solution has been proposed from a spectrophotometric titration study (Scheme 5; Table 2) [58]. Compared to the binding to alkali metal ions, the binding of [Ni^{II}salen] with divalent alkaline earth metal ions is significantly strong. The stability constants for the complexation with alkali and alkaline earth metal ions increase with the increasing charge density, probably because [Ni^{II}salen] has no preorganized cavity for size selective complexation [58]. This indicates that the interaction between [Ni^{II}salen] and alkaline earth metal ions is mainly governed by the electrostatic term. It is also noteworthy that the stability constants of the three nickel(II) complexes listed in Table 2 are in the order of $[Ni^{II}saltn] > [Ni^{II}salen] > [Ni^{II}saloph]$. The flexibility of the linker between two sp^2 nitrogen donors is suggested to affect the binding strength. Whereas the reaction of $[Ni^{II}salen]$ with perchlorate salts, $G(ClO_4)_2$, gave trinuclear species [(Ni^{II}salen)₂G](ClO₄)₂, the reaction of $[M^{II}$ salen] (M = Cu, Ni) with alkaline earth halide salts, GX_2 (G = Mg, Ca, Sr, Ba; X = Cl, Br, I), afforded a series of 1:1 adduct complexes [(M^{II}salen)GX₂] [59] (Chart 4b). Thus, the counter anion significantly influences the stoichiometry and structure of the adduct complexes.

The [M^{II}salen]-type d-block transition metal complexes also form stable adducts with f-block lanthanide(III) ions [60–62]. In particular, the magnetic interactions in Cu^{II}/ Gd^{III} and related 3d/4f heterometallic systems are of great interest. The ferromagnetic interactions between copper(II) and gadolinium(III) were first found in [(Cu^{II}salen)₂Gd^{III}](ClO₄)₃ and [(Cu^{II}saltn)Gd^{III}(NO₃)₃], etc. [63, 64], which were synthesized by the reaction of the

29

M(OAc)₂ H₂L [(MIIL)2MII(OAc)2Y2] L: saltn L: salbn $R = (CH_2)_3$ $R = (CH_2)_4$ M = Ni, Y = DMF M = Fe, Y = DMF M = Ni, Y = MeOHM = Zn, Y = noneM = Co, Y = DMF M = Ni, Y = DMSOM = Ni, Y = pyM = Mn. Y = none M = Cu, Y = dioxane M = Co, Y = none M = Zn, Y = none M = Cd, Y = none L: salamo $R = OCH_2CH_2O$ M = Ni, Y = EtOHM = Zn, Y = none

Scheme 7 Formation of trinuclear complexes by the reaction of salen-type ligands with a transition metal acetate

Scheme 6 Heteronuclear 3d/4f complexes derived from salen-type ligands

mononuclear $[Cu^{II}L]$ (L = salen, satln) with GdX₃ (X = ClO₄, NO₃) salts (Scheme 6). Using a similar procedure, several copper(II)–lanthanide(III) [65, 66] or zinc(II)– lanthanide(III) [67–69] heterodinuclear complexes were synthesized to study their physical properties. Depending on the reaction conditions, dinuclear $[(M^{II}L)LnX_3]$ complexes and trinuclear $[(M^{II}L)_2Ln]X_3$ complexes were obtained (L = salen-type ligand) (Scheme 6a). An ESI–MS study showed that an equimolar mixture of $[Ni^{II}salen]$ and $Ln(NO_3)_3$ in methanol contains both the NiLn and Ni_2Ln species and that the formation of dinuclear NiLn species is more favored when the smaller lanthanide is used [70].

On the other hand, the reaction of $[M^{II}salen]$ (M = Cu, Ni) complexes with lanthanide(III) diketonato complexes [LnX₃] (X = hfa, pta) mostly afforded dinuclear 3d/4fcomplexes $[(M^{II}salen)LnX_3]$ [71–74] (hfa = 1,1,1,5,5,5hexafluoropentane-2,4-dionate, pta = 1,1,1-trifluoro-5,5dimethylhexane-2,4-dionate) (Scheme 6b), whose magnetic and thermal properties were studied. The corresponding zinc(II)-lanthanide(III) complex [(Zn^{II} saltn)Eu(pta)₃] was also prepared and its luminescence due to the f-f transition of europium(III) was observed. The stability constant for the formation of $[(Zn^{II}saltn)Eu(pta)_3]$ from $[Zn^{II}saltn]$ and [Eu(pta)₃] is log $\beta = 4.13$ in chloroform, which is significantly higher than that for the H₂saltn-[Eu(pta)₃] system $(\log \beta = 2.95)$ [75]. This indicates that the conversion of H₂saltn into [Zn^{II}saltn] significantly enhances the binding ability to the Eu^{3+} ion.

The mononuclear $[M^{II}salen]$ complexes can coordinate not only to the group 1–3 metals but also to d-block transition metals. The reaction of $[M^{II}salen]$ -type complexes with transition metal salts afforded various kinds of adduct complexes [50, 57, 76-81]. In some cases, homotrinuclear complexes $[(M^{II}L)_2M^{II}(OAc)_2Y_2]$ were directly obtained by the reaction of the salen-type ligands H₂L with metal acetate, $M(OAc)_2$ (M = divalent d-block metals) (Scheme 7) [82–93]. Ligands with a longer N–N bridge, such as saltn, salbn, and salamo, are likely to form this type of trinuclear structures when complexed with cobalt(II), zinc(II), manganese(II), etc. In these complexes, the two $[M^{II}L]$ units are bound together by the third M^{II} ion via μ -phenoxo bridges as well as the μ -acetato ligands. Heterotrinuclear analogues $[(M^{II}L)_2M'^{II}(OAc)_2]$ $(M \neq M')$ with a similar structure have also been prepared [94-99]. On the other hand, the complexation of the salen-type ligands with lanthanide(III) ions instead of d-block metal ions afforded several kinds of oligometallic complexes or coordination polymers [100, 101].

When the salen-type ligands have methoxy groups at the 3,3'-positions, these groups take part in the coordination [89, 102]. The methoxy groups improve the *coordinating ability* of the [M^{II}salen]-type unit by changing the bidentate bis(phenoxo) O₂ chelate site into a hemicircular O₄ binding site (Chart 5). The O₄ donor set consisting of two phenoxo and two methoxy groups is particularly suitable for the tetradentate chelate coordination to larger cations such as the group 1-3 metals. Using these kinds of ligands, a large number of heterometallic [M^{II}(3-MeOsalen)Ln]-type complexes can be synthesized (Chart 5a). In particular, Cu^{II}/Gd^{III} and related 3d/4f heterodinuclear complexes [103-119] are of interest because of their magnetic exchange interactions. This basic idea has also been applied to the synthesis of the Zn^{II}/Ln^{III} heterodinuclear complexes that exhibit a visible ($Ln = Sm^{3+}, Eu^{3+}, Tb^{3+}$, etc.) or near IR (Ln = Nd³⁺, Yb³⁺, etc.) luminescence [120–126]. An ESI–MS study clearly showed that the

interaction of $[Ni^{II}(3-MeOsalen)]$ with Ln^{3+} (= La^{3+} , Eu^{3+} , Lu^{3+}) is stronger than that of $[Ni^{II}salen]$ [70]. This result indicates that the methoxy groups improve the *coordinating ability* of the $[M^{II}salen]$ unit.

Trinuclear $[(M^{II}(3-MeOsalen))_2Ln]$ -type complexes (M = Ni, Cu [127], Zn [128-131]) were also synthesized from the 3-MeOsalen-type ligands (Chart 5b). In these complexes, the lanthanide(III) ion is almost completely surrounded by two sets of the tetradentate O_4 donor sets. The formation ratio of the dinuclear ZnLn and trinuclear Zn₂Ln complexes for the $[Zn^{II}(3-MeOsalamo)]$ –Ln(NO₃)₃ system depends on the ionic radius of the lanthanide(III) ions [126, 132]. Larger lanthanide(III) ions, such as La³⁺, can accommodate two $[Zn^{II}(3-MeOsalamo)]$ units to give a Zn₂Ln complex, whereas the smaller lanthanide(III) ions $(Sm^{3+}-Lu^{3+})$ can interact with only one $[Zn^{II}(3-MeOsalamo)]$ unit to give a dinuclear ZnLn complex.

In addition to the above-mentioned rare earth metal complexes, the $[M^{II}(3\text{-MeOsalen})]$ -type units can form various kinds of heteronuclear complexes containing alkali [46, 133–136] or alkaline earth metals [137]. The reaction of the $[M^{II}(3\text{-MeOsalen})]$ complexes with these metal ions gave a stable 1:1 adduct $[(M^{II}(3\text{-MeOsalen}))G]X_n$ or 2:1 trinuclear complex $[(M^{II}(3\text{-MeOsalen}))_2G]X_n$, depending on the ionic radius of G and the counter anions (Chart 5a,

b). The $[M^{II}(3\text{-MeOsaltn})]$ –alkali metal systems have also been used to synthesize coordination polymers in which the alkali metal ions are infinitely connected by the phenoxo groups of the $[M^{II}(3\text{-MeOsaltn})]$ bridges (for example, see Chart 5c) [133, 138–140]. When the d-block metal ions are absent, oligometallic complexes containing several lanthanide(III) ions were formed upon the complexation of the 3-MeOsalen-type ligands with the lanthanide(III) salt [141, 142].

The introduction of hydroxy groups at the 3,3'-positions significantly changes the complexation behavior. The 3-hydroxysalbn [143, 144] and 3-hydroxysalamo [145] ligands formed an interesting octanuclear cluster structure upon complexation with zinc(II) or cobalt(II) acetate (Chart 5d). The ligand has two catecholato coordination sites in addition to the N₂O₂ chelate site. The catecholato-type coordination significantly affects the *coordinating behavior* of the [M^{II}salen]-type complexes, leading to a unique oligometallic structure.

Therefore, mononuclear [M(salen)]-type complexes behave as a ligand to the group 1–3 and transition metals to give the *adduct* complexes. Some of them are stable enough to be isolated as crystalline hetero- or homo-multimetallic complexes. In all the complexes, the bridging of the phenoxo moieties plays an important role in the formation of the oligometallic structures. The binding study with guest cations in solution clearly demonstrated that the *coordinating ability* is mainly governed by the electrostatic interaction between the phenoxo groups and the guest cation. This *coordinating ability* of these mono(salen)-type complexes should be taken into account for understanding the guest-binding behavior of the macrocyclic salen and acyclic oligo(salen) derivatives described in this review.

Salen-containing macrocycles and their ion recognition ability

A crown ether is one of the most important host molecules that can bind alkali metal ions [27]. In many cases, each of the oxygen atoms coordinates to the guest metal ion in a convergent fashion. If the two neighboring oxygen atoms, the $-OCH_2CH_2O-$ fragment, are replaced by an [M(salen)] unit, a stronger guest binding is expected due to the negative charge of the two neighboring phenoxo oxygen atoms (Chart 6).

In fact, crown ethers in which one of the -OCH₂CH₂Ofragments is replaced with an [M(salen)] unit was first developed by D. N. Reinhoudt [146-151]. This class of complexes $1 \cdot M$ (M = Ni, Cu, Zn) was synthesized by cyclization of a dialdehyde and a diamine in the presence of a barium salt followed by the complexation with a d-block metal and removal of the template Ba^{2+} ion (Scheme 8). The heterometallic dinuclear complexes 1. MBa contain a d-block metal ion such as nickel(II), copper(II), or zinc(II) in the soft salen-type binding site and a Ba^{2+} and Cs^+ ion as the template in the *hard* crown ether cavity (Fig. 2). Although no stability constants in solution have been reported, the host-guest complexes $H_2 \mathbf{1}$ ·Ba and 1. MBa are stable enough to be isolated as crystals. The electrochemical properties due to the d-block metals are affected by the presence or absence of the template Ba^{2+} ion. To date, several analogous ligands have been synthesized to obtain the heterodinuclear complexes containing Na^+ , Ba^{2+} , La^{3+} , etc. [152–157]. Some of the compounds showed a catalytic activity in organic reactions [158–161]

Chart 6 Design of crown ethers bearing an [M(salen)] unit

Scheme 8 Synthesis of [M^{II}salen]-containing crown ethers 1·M

Fig. 2 X-ray crystal structure of 1-NiBa reported by D. N. Reinhoudt et al. The counter anions and solvent molecules are omitted

or act as SOD/catalase mimetics [162]. These macrocycles are regarded as a kind of compartmental ligand [163–167] that has two coordination sites separated by two phenoxo oxygen atoms. Salen-containing macrocyclic compounds having a binaphthocrown ether [168, 169], spherand [148, 170], calixcrown [171], cyclic amide [172–174], and SCS-pincer ligand [175] have also been designed for the recognition of guest species including organic molecules.

One of the important features of the macrocycles containing a salen-type coordination site is that the metalation of the salen moiety makes the macrocycle more rigid. The four coordination bonds that are newly formed make the effective size of the cavity smaller. This shrinkage of a macrocycle by metalation was used to *lock* a rotaxane structure (Scheme 9) [176, 177]. A saloph-crown ether H₂2

Scheme 9 Rotaxane synthesis using the threading followed by shrinking protocol based on saloph-crown ether H_22

formed a host-guest complex $H_22 \cdot G$ with a dialkylammonium salt (G) having a pseudorotaxane structure. This pseudorotaxane $H_22 \cdot G$ existed as an equilibrated mixture of separate entities and the complexed form. However, when palladium(II) was added to the mixture, the pseudorotaxane H₂2·G was converted into a rotaxane 2·Pd·G which can no longer dissociate into the constituents. This method, threading followed by shrinking, can be a new protocol for rotaxane synthesis in which the shrinking retards the equilibrium at the final stage. Another protocol for the rotaxane synthesis utilizes the modulation of the C=N bond recombination kinetics by complexation at the salen site [178]. The threading of the axle occurs in the absence of metal ions due to the C=N bond recombination, but the complexation with nickel(II) locks the threading/ unthreading to give the rotaxane structure.

Crown ethers containing two [M(salen)] units have also been designed. A macrocycle H_43 ·Ba was synthesized from the dialdehyde and diamine in the presence of Ba^{2+} as a template (Scheme 10) [179, 180]. The obtained host-guest complex H_4 **3**·Ba is stable enough to be isolated as crystals. This high stability is closely related to the template effect during the macrocyclization. Cs⁺ was also effective as a template for the [2 + 2] macrocyclization. The mononuclear barium complex H_4 3·Ba was easily converted into the corresponding heterodinuclear complexes $3 \cdot M_2 Ba$ (M = Cu, Ni, Zn), some of which were identified by X-ray crystallography. In the crystal structure of 3.M2Ba $(M = H_2, Cu, Ni)$, all ten oxygen atoms (four phenolic and six ether oxygen atoms) coordinate to the Ba^{2+} ion so that the macrocyclic framework completely surrounds the Ba^{2+} ion (Fig. 3). A similar bis(salen) ligand formed a Zn₂Ba heterotrinuclear complex, which can recognize amine derivatives [181].

A smaller bis(salen)-type crown ether H_44 , which has a cavity similar to 18-crown-6, was also synthesized [182]. In contrast to the above mentioned larger derivative H_43 , a template metal was not required for the synthesis. The

Scheme 10 Synthesis of metal complexes of bis(saloph) crown ether ${\rm H}_43$ using ${\rm Ba}^{2+}$ ion as a template

Fig. 3 X-ray crystal structure of $3 \cdot Cu_2Ba$ reported by D. N. Reinhoudt et al. The counter anions and solvent molecules are omitted

reaction of a diformyl diphenyl ether derivative with ophenylenediamine gave the [2 + 2] cyclic product H₄4 in high yield without using the metal salt as a template (Scheme 11). However, this ligand H_44 in its uncomplexed form did not show any noticeable binding affinity toward alkali metal ions (Na⁺, K⁺, Rb⁺, Cs⁺). This poor binding affinity is reasonably explained by the properties of the oxygen donor atoms; both of the phenol oxygen atoms and biaryl ether oxygen atoms have a lower coordination ability to metal ions than the dialkyl ethers or alkyl aryl ethers. Furthermore, its non-planar structure, in which not all the phenolic oxygen atoms are directed inwardly to the cavity (Fig. 4a), is also responsible for the poor binding affinity. However, the conversion of the ligand H₄4 into the corresponding dinickel(II) complex 4.Ni2 significantly changed the binding behavior due to the newly formed eight coordination bonds. The X-ray crystallographic analysis revealed that the dinuclear complex 4.Ni2 adopted a planar structure. All six oxygen atoms are directed inwardly to the cavity and make a hexagonal array, which approximates an 18-crown-6 (Fig. 4b). Thus, the oxygen donor atoms of 4.Ni₂ are well preorganized for ion recognition.

Scheme 11 Synthesis of bis(saloph) macrocycle $\rm H_44$ and its metal complex $\rm 4{\cdot}Ni_2$

Fig. 4 X-ray crystal structures of a H₄4 and b 4·Ni₂

A spectroscopic study showed that the metallohost, 4 Ni₂, very strongly binds a Na⁺ ion in DMSO to afford the 1:1 metallohost-guest complex, 4·Ni₂Na (Chart 7a). The binding affinity is significantly enhanced in an off/on fashion by the conversion from the bis(saloph) ligand H_44 to the nickel(II) complex 4.Ni₂. The enhancement of the binding affinity was also observed for K⁺, Rb⁺, and Cs⁺. In these cases, however, the complexation afforded several kinds of oligomeric species, such as 2:1, 3:2, 4:3 (ligand/ metal) complexes, as well as the 1:1 complex. Since the parent 18-crown-6 ether can form a 2:1 or 3:2 sandwich complex with a larger alkali metals, such as Rb⁺ and Cs⁺ [183], the oligometric complexes of $4 \cdot Ni_2$ should adopt a sandwich or club sandwich structure, in which two or more flat molecules of $4 \cdot Ni_2$ are held together by the guest metal ions (Chart 7b). The phenoxo oxygen atoms also contribute

Chart 7 Proposed structures of metallohost-guest complexes of $4 \cdot Ni_2$ with alkali metal ions

to the O–G–O bridged structure as seen in the H₂(3-MeOsaltn) coordination polymers (see Chart 5c) [133]. Consequently, the conversion of the macrocycle H₄4 into the planar metallohost $4 \cdot Ni_2$ not only enhances the guest binding affinity, but also induces the metal-assisted assembly with the stacking structures. This complexation at the saloph sites makes the molecular structure more rigid and planar, thus favorable for the aggregate formation.

When all the three $-\text{OCH}_2\text{CH}_2\text{O}$ - fragments of the 18-crown-6 are replaced by three [M(salen)] units, the cavity is surrounded by six negatively-charged phenoxo oxygen atoms (Chart 8). An extremely high binding affinity toward hard metal ions is expected due to the negatively charged phenoxo groups integrated in a cyclic fashion, as predicted from the examples of metallacrown ethers having peripheral coordination sites for d-block metals and a central cavity [184, 185]. A useful building block for the tris(salen) macrocycles is 2,3-dihydroxyben-zene-1,4-dicarbaldehyde, from which various kinds of tris(salen)-type macrocycles H₆**5**·Ba were synthesized in $\sim 70\%$ yield by the reaction of 2,3-dihydroxynaphthalene-

Chart 8 Design of metallohosts derived from tris(salen)-type macrocyclic ligands

Scheme 12 Synthesis of tris(salen)-type macrocyclic complexes H_65 ·Ba using Ba^{2+} ion as a template

Scheme 13 Non-template synthesis of tris(saloph) macrocyclic ligands $\mathrm{H}_6 6$

1,4-dicarbaldehyde with a series of diamines in the presence of a barium salt as the template (Scheme 12) [186]. The [3 + 3] macrocyclization of the dialdehyde with the diamines efficiently took place, while the [4 + 4] macrocycle was obtained when propane-1,3-diamine was used. However, the ion recognition ability of these macrocycles was not reported.

This type of macrocycle was also synthesized without using the template ion. The reaction of 2,3-dihydroxybenzene-1,4-dicarbaldehyde with o-phenylenediamine almost quantitatively afforded the [3 + 3] macrocycle H₆6a (Scheme 13) [187]. The reason for the highly efficient cyclization can be explained by the following kinetic and thermodynamic aspects. During the final stage of the [3 + 3] cyclization, the intramolecular O–H…N hydrogen bonds as well as the rigid phenylene framework make the amino and formyl groups close to each other so that the cyclization is kinetically favored. Furthermore, the less strained [3 + 3] macrocycle is predominantly formed as the result of the thermodynamic equilibration due to the dynamic feature of the C=N bonds [188], even if acyclic oligomers or macrocycles with different sizes are initially formed. The low solubility of the [3 + 3] macrocycle H₆6a may also contribute to the efficient formation. In the crystal

Fig. 5 X-ray crystal structure of tris(saloph) macrocycle H₆6a

structure, the tris(saloph) H_66a adopts an almost planar structure in which the six phenolic oxygen atoms are directed inwardly (Fig. 5). The larger macrocyclic tris(saloph) ligands were also synthesized using a similar non-template procedure [189–193].

The metal complexation behavior was investigated for more soluble analogues [194–202] such as H_66b-H_66d having alkoxy groups. The ligand H_66c binds alkali metal ions G (=Na⁺, K⁺, Rb⁺, Cs⁺) in the central O₆ site to give the host–guest complexes H_66c ·G, which form a tubular aggregate in solution [194]. On the other hand, the metalation of the three peripheral saloph sites with d-block transition metals led to somewhat unexpected results [197– 202]. The complexation of H_66 with an excess amount of zinc(II) acetate almost quantitatively afforded the heptanuclear complex $6 \cdot Zn_7$, in which three zinc(II) ions are in the saloph coordination sites and a tetrahedral $Zn_4(\mu_4-O)$ unit is in the central O₆ cavity (Chart 9a) [197, 198]. Although the macrocycle H_66 has three saloph sites, the

Chart 9 Oligometallic complexes obtained by the reaction of H_66 with zinc(II) acetate. In the structural formulae, the counter anions and solvent molecules coordinating to the metal ions are omitted for clarity

trinuclear complex with a vacant O_6 cavity was difficult to be isolated in its discrete form because of the aggregation [198]. Upon the reaction with 4 equiv of zinc(II), a tetranuclear complex **6**·Zn₄, which has the fourth zinc(II) in the O_6 cavity, was obtained (Chart 9b) [202]. The complexation with zinc(II) in the central O_6 cavity is ascribed to the accumulated phenoxo groups inwardly directed, which can coordinate to the zinc(II) ions in a catecholato fashion. In fact, the zinc(II) ions in the O_6 cavity of the hepta- or tetranuclear complexes **6**·Zn₇ and **6**·Zn₄ are always coordinated by the macrocyclic moiety in a catecholato fashion. A related catecholato-type coordination was also observed for the octanuclear zinc(II) complexes of the hydroxy-substituted mono(salen)-type ligands (3-hydroxysalbn or 3-hydroxysalamo) as described above (see Chart 5d) [143–145].

In contrast to the Schiff base macrocycles H_66 , the macrocyclization reaction of the 2,3-dihydroxybenzene-1,4-dicarbaldehyde (H₂7) with 1,2-bis(aminooxy)ethane afforded the [3 + 3] macrocyclic oxime ligand H_68 in low yield (~15%) [203] (Scheme 14a). The low efficiency of the macrocyclization is attributed to the inertness of the oxime functionality compared to the imine analogues [204, 205]. While the imines undergo C=N bond recombination in solution, the oximes do not undergo such a reaction under the typical conditions [206]. Consequently, the equilibration to the most thermodynamically stable macrocycle does not occur. The GPC analysis of the cyclization products indicated the formation of various kinds of cyclic and acyclic oligomers. Noteworthy is the fact that the efficiency of the [3 + 3] cyclization reaction is dramatically improved when zinc(II) and lanthanum(III) ions are present. After the demetalation with dilute hydrochloric acid, the free macrocyclic oxime ligand H₆**8** was isolated in 94% yield based on the starting dialdehyde H₂**7** (Scheme 14b). Apparently, the zinc(II) and lanthanum(III) ions act as a template for the cyclization. Such a significant *oligometallic template* effect, in which multiple metal ions simultaneously act as the template for the cyclization, is quite rare [207–212]. In particular, this is the first example of the *hetero-oligometallic template* effect where different kinds of metal ions simultaneously act as the template.

The highly efficient macrocyclization by the *oligometallic template* can be explained by an important intermediate, the Zn₃La tetranuclear complex of the dialdehyde H₂7. This discrete complex, 7_3 Zn₃La, was quantitatively formed when the dialdehyde, H₂7, was mixed with zinc(II) (1 equiv) and lanthanum(III) (1/3 equiv). In the X-ray crystal structure of 7_3 Zn₃La, the salicylaldehyde moieties of the dialdehyde H₂7 coordinate to the Zn²⁺ ions at the periphery and the catechol moiety to the La³⁺ ion at the center (Fig. 6a), as seen in the related self-assembled metallacrowns [213, 214]. The reaction of this tetranuclear complex, 7_3 Zn₃La, with 3 equiv of 1,2-bis(aminooxy)ethane almost quantitatively took place to afford the corresponding macrocyclic complex, **8**·Zn₃La. The X-ray structure of the resulting complex, **8**·Zn₃La (Fig. 6b), is

Scheme 14 Oligometallic template synthesis for macrocyclic tris(salamo) ligand $H_6 8$

Fig. 6 X-ray structures of **a** 7_3 Zn₃La, **b** $8 \cdot$ Zn₃La, and **c** H₆8, showing the structural similarity of 7_3 Zn₃La and $8 \cdot$ Zn₃La. The counter anions and solvent molecules are omitted. Reprinted with permission from Ref. [203]

remarkably similar to the initial tetranuclear complex 7_3Zn_3La . This indicates that the macrocyclization requires very little structural change in the dialdehyde moieties because of coordination to the Zn_3La tetranuclear core. The almost complete conversion is ascribed to the sevenmembered ring-closure, which presumably more easily takes place than the 36-membered ring closure in the absence of the template metals. Furthermore, the free macrocyclic ligand H_68 (Fig. 6c) was obtained by demetalation with dilute hydrochloric acid because of the high chemical stability of the oxime functionality under the acidic hydrolytic conditions.

The H_68 ligand formed two types of hexanuclear complexes, 8_2 Zn₆ then $8 \cdot$ Zn₆, upon complexation with zinc(II) (Scheme 15a, b) [215]. It is noteworthy that each of the complexation steps very efficiently took place. When less than 3 equiv of zinc(II) were present, only the first complex 8_2 Zn₆ was observed. As seen in the imine analogue H₆6, the formation of the trinuclear species $8 \cdot Zn_3$ with a vacant O₆ cavity is unfavorable. The unique unsymmetrical dimeric structure formulated as [8.Zn₃]-Zn₂-[H₂8.Zn] is clearly demonstrated by the X-ray crystallography as well as the MS and NMR studies. Contrary to the corresponding imine analogues H_66 that formed an oligometric mixture of $6 \cdot Zn_3$, the oxime macrocycle, H₆8, exclusively gave the unsymmetrical dimer 8_2 Zn₆. When more than 3 equiv of zinc(II) are added, the second hexanuclear complex $8 \cdot Zn_6$ begin to form. This complex 8.Zn₆ has a monomeric structure in which a $Zn_3(\mu_3$ -OH) unit occupies the central

Scheme 15 Summary of the oligometal complexation of tris(salamo) macrocyclic ligand $H_6 8$

 O_6 cavity of the trimetalated ligand, $\mathbf{8} \cdot Zn_3$. Consequently, the ligand $H_6\mathbf{8}$ undergoes an apparent two-step conversion to $\mathbf{8}_2Zn_6$, then $\mathbf{8} \cdot Zn_6$. This is in stark contrast to the complexation behavior of the imine analogs $H_6\mathbf{6}$, which forms a 1:4 complex, then a 1:7 complex.

Although the $8 \cdot Zn_3$ with a vacant O₆ site is difficult to prepare, the ligand H_68 can recognize a guest metal ion in the presence of three equiv of zinc(II) ions. When the ligand H_68 was reacted with 3 equiv of zinc(II) and 1 equiv of the guest ion G (= Ca^{2+} , Ba^{2+} , La^{3+} , etc.), the metallohost-guest complex 8.Zn₃G was quantitatively formed (Scheme 15c). This should be driven by the thermodynamic equilibration, because the different nature of the peripheral N₂O₂ sites and the central O₆ cavity is particularly suitable for the site-selective metalation with two different metal sources. However, the heterometallic complexes, 8.Zn₃Ca and 8.Zn₃Ba, were completely converted into the homometallic complex, 8.Zn₆, when an additional 3 equiv of zinc(II) ions were present (Scheme 15d). On the other hand, the homometallic $8 \cdot Zn_6$ was quantitatively converted into 8. Zn₃La when 1 equiv of La^{3+} was added (Scheme 15e). As a result, the apparent binding affinity in the central O_6 site is in the order of Ca^{2+} , $Ba^{2+} < Zn_3(\mu_3-OH) < La^{3+}$.

The relatively rigid framework of the metalated tris(salen)-type macrocycle is also useful to design a ligand field for the metal ion in the central O_6 cavity. It is usually difficult to precisely design a ligand field of the group 1–3 metals because of the flexible coordination geometry. However, the six phenoxo oxygen atoms of the macrocyclic systems are arranged in a cyclic fashion around the guest metal G. This structural constraint leads to an easy-axis magnetic anisotropy for lanthanide(III), resulting in an SMM (single-molecule magnet) behavior as predicted from the coordination environment [216, 217].

Consequently, the integrated salen moieties provide a unique environment for the homo- and heterometallic complexes. The complexation at the peripheral salen-type coordination sites of the bis- or tris(salen) macrocycles with d-block metal ions makes a cavity surrounded by multiple phenoxo groups, in which subsequent complexation with the group 1–3 metals or d-block is significantly enhanced. This unique multi-metal complexation behavior probably results from both the macrocyclic effect and the *coordinating ability* of the [M^{II}salen] units due to the negative charges.

Linear oligo(salen) ligands for helical metallohost-guest complexes

In the design of oligo(salen) host molecules, the salen-type coordination sites need to be arranged in such a way that all

Scheme 16 Design of acyclic oligo(salen)-type ligands for helical metallohost-guest complexes

the phenoxo moieties are oriented to the guest recognition site. If this requirement is satisfied, acyclic oligo(salen) molecules are also expected to act as an ion recognition system. One of the candidates is a series of acyclic oligo(salen) ligands in which the neighboring salen-type ligands share one benzene ring (Scheme 16). When the salen-type coordination sites of this ligand are metalated, the oxygen atoms of the neighboring two salen units are forced to orient to the recognition site in a convergent fashion. This will change the conformation of the bis(salen) ligand into a C-shaped structure and that of the tris(salen) or longer analogues into a helical one. The C-shaped or helical metallohosts are expected to bind a guest ion in the cavity surrounded by the phenoxo groups. Their physical properties as a fragment of helical salen polymers [218-220] or their dynamic behavior as a salen-containing foldamer [221-223] are also of interest.

The first acyclic bis(salen)-type ligand based on the above mentioned concept is the tetraoxime ligand H_410 [224] (Scheme 17). The oxime functionality was indispensable for this study. The synthesis of the imine analogues was unsuccessful due to the labile character of the

Scheme 17 Synthesis of acyclic bis(salen)-type ligands ${\rm H_49}$ and ${\rm H_410}$

imine C=N bonds [225]. For example, the reaction of the monoimine derivative with the dialdehyde yielded the cyclic tris(saloph) H₆**6a** (see Scheme 13) instead of the desired acyclic bis(saloph) H₄**9**. The low solubility of the cyclic tris(saloph) H₆**6a** presumably shifted the equilibrium to the macrocycle. Thus, an imine group is not suitable as a constituent of the acyclic bis(salen)-type ligands. In contrast, the oxime analogue, salamo [204, 205], is highly stable under conditions in which the imine analogues suffer from C=N recombination. The synthetic intermediate monooxime and the target tetraoxime ligand H₄**10** are sufficiently stable to resist such a C=N bond recombination.

Since the bis(salamo) ligand $H_4 10$ has two salamo coordination moieties for d-block metals, the ligand H_410 is expected to form a dinuclear metallohost. However, contrary to expectation, the bis(salamo) ligand H₄10 quantitatively afforded a trinuclear zinc(II) complex 10.Zn₃, which was identified by mass spectrometry and X-ray crystallography (Fig. 7) [224, 225]. All the added zinc(II) ions were used for the formation of the trinuclear complex 10.Zn₃. When 2 equiv of zinc(II) acetate were present, 2/3 of the H₄10 was converted into $10 \cdot Zn_3$ and the remaining 1/3 was unchanged. During the complexation, no other complexes with a different stoichiometry, such as 1:1 and 1:2, were observed. The favored formation of the trinuclear complex $10 \cdot Zn_3$ can be explained by a chelate cooperativity [226], in which bridging coordination of the acetato and phenoxo ligands play an important role (Fig. 7). In the crystal structure, two of the three zinc(II) ions are located at the salamo moieties as expected, while the third one is in the central O_6 site. Two μ -acetato ligands

Fig. 7 X-ray crystal structure of 10-Zn₃. The hydrogen atoms are omitted for clarity

coordinate to the zinc(II) trinuclear core. Although the central zinc(II) ion occupies the O_6 cavity, four of the six oxygen donor atoms (two phenoxo and two methoxy oxygen atoms) do not coordinate to the central zinc(II) ion, e.g., the zinc(II) ion seems to be too small to fit. Therefore, the O_6 site is expected to bind a larger group 1–3 metal ion with concomitant release of the initially bound zinc(II).

However, the metal exchange with alkali metal ions (Na⁺, K⁺, Rb⁺, Cs⁺) or Mg²⁺ did not proceed at all, although the six oxygen atoms of the $10 \cdot Zn_2$ unit are arranged like a crown ether. On the other hand, the metal exchange took place when a guest metal G (= Ca^{2+} , Sr^{2+} , or Ba²⁺) was added (Scheme 18) [224, 227, 228]. The formation of the heterotrinuclear complexes 10.Zn₂G was evidenced by the mass spectrometry and X-ray crystallography. While there have been a few reports on hetero- to homometallic or hetero- to heterometallic transmetalation [229–231], the formation of the $10 \cdot Zn_2G$ from $10 \cdot Zn_3$ is the first example of the homo- to heterometallic transformation and also the first ion recognition system based on the principle of metal exchange. The selectivity for the metal exchange is in the order of $Ca^{2+} > Sr^{2+} > Ba^{2+} \gg Mg^{2+}$, clearly showing the Ca^{2+} -selectivity (Table 3). The $Ca^{2+}/$ Mg^{2+} selectivity, which is biologically important, is estimated to be $>10^5$, being comparable to those of the excellent Ca^{2+} receptors or sensors, such as BAPTA [232] (selectivity coefficients, 5.20), Quin2 (4.4) [232], and K23E1 (5.0) [233]. Thus, among the biologically important metal ions $(Na^+, K^+, Mg^{2+}, Ca^{2+})$, the trinuclear complex

Table 3 Equilibrium constants for metal exchange of trinuclear complex $10{\cdot}\text{Z}n_3$

Group 1		Group 2		Group 3	
Na ⁺	< 0.001	Mg^{2+}	< 0.001	Sc ³⁺	>1000
K^+	< 0.001	Ca ²⁺	32	Y ³⁺	>1000
Rb^+	< 0.001	Sr^{2+}	3.9	La ³⁺	>1000
Cs^+	< 0.001	Ba ²⁺	0.16	Lu ³⁺	>1000

Determined by ¹H NMR titration in CDCl₃/CD₃OD (1:1) (data cited from Ref. [228])

Scheme 18 Ion recognition based on metal exchange of trinuclear complex 10·Zn₃. The counter anions are not included for simplicity in the determination of the equilibrium constants

10 Zn_3 exclusively recognized Ca^{2+} . When rare earth metal ions (Sc³⁺, Y³⁺, La³⁺–Lu³⁺) were used as the guest, the metal exchange of the $10 \cdot Zn_3$ quantitatively occurred (Table 3). The equilibrium constants are estimated to be >1000 in CDCl₃/CD₃OD (1:1). The difference in the ionic sizes of these rare earth metal ions did not affect the quantitative metal exchange. As a result, this trinuclear complex $10 \cdot Zn_3$ discriminates the charge of the guest metals. This trend is basically derived from the intrinsic properties of the [M^{II}salen]-type complex (see Tables 1, 2), whose interaction with the group 1,2 metals is mainly governed by an electrostatic interaction [58]. However, the trinuclear complex 10.Zn3 showed a significant Ca2+selectivity among the alkaline earth metal ions. This sizeselectivity can be ascribed to the preorganization effect, in which all of the six oxygen donor atoms participate in the coordination to the guest ion (see below). When sulfurcontaining salamo [92, 234] moieties were introduced instead of the N₂O₂ salamo coordination sites, the dipalladium(II) metallohost showed an Ag⁺-selectivity in the binding in the central S_2O_4 recognition site [235].

The X-ray crystallographic analysis revealed that the heterotrinuclear metallohost-guest complexes $10 \cdot \text{Zn}_2\text{G}$ adopt a single-helical structure in which the acyclic bis(salamo) ligand 10 winds around the central metal ion G (Fig. 8) [228]. All of the oxygen donors of the O₆ site including the methoxy groups effectively surround the central guest metal ion. This size fit should be the reason for stabilization of the heterotrinuclear complex $10 \cdot \text{Zn}_2\text{G}$ to shift the metal exchange equilibrium. Among the three complexes with alkaline earth metals (Ca²⁺, Sr²⁺, Ba²⁺),

Fig. 8 X-ray crystal structures of $10 \cdot \text{Zn}_2\text{G}$ (G = Ca²⁺ (**a**), Sr²⁺ (**b**), Ba²⁺ (**c**), Sc³⁺ (**d**), Y³⁺ (**e**), La³⁺ (**f**)). The counter anions and solvent molecules are omitted. The winding angles (θ) of the helices are also indicated. Reprinted with permission from Ref. [228]

the winding angle of the $10 \cdot Zn_2Ba$ is the smallest (296°) and that of the $10 \cdot Zn_2Ca$ is the largest (317°) (Fig. 8a–c). The Ca²⁺-selectivity can probably be ascribed to the smallest strain of the oligooxime moiety in $10 \cdot Zn_2G$ among the four alkaline earth metal ions (Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺). A similar trend was observed for the rare earth metal complexes (345° for $10 \cdot Zn_2Sc$, 326° for $10 \cdot Zn_2Y$, and 288° for $10 \cdot Zn_2La$) (Fig. 8d–f). Thus, the ligand moiety changes its winding angle to accommodate the guest metal ion, which is known as the induced fit mechanism. The winding angle can be set at various values by choosing the guest cation G. Accordingly, the helical complexes $10 \cdot Zn_2G$ are regarded as a *tunable* molecular spring or coil, whose winding angles can be modulated by changing the central guest ion G.

A longer derivative, tris(salamo) ligand H_611 , was expected to form a single-helical metallohost upon the complexation with zinc(II) ions. However, the complexation of the ligand H_611 with zinc(II) afforded a mixture of 11.Zn₄ isomers. Probably, the central zinc(II) ion is not tightly fixed in the cavity, because the trinuclear 11. Zn₃ unit has a cavity too large to fit a small zinc(II) ion. However, this mixture was converted into a discrete metallohost-guest complex 11.Zn₃G when reacted with a guest metal G ($=Ba^{2+}$ or La^{3+}) (Scheme 19). This indicates that the metal exchange efficiently took place. Since other cations, such as K^+ , Cs^+ , Mg^{2+} , and Ca^{2+} , did not cause such a convergence to one species, the tetranuclear $11 \cdot Zn_4$ mixture acts as a metalloreceptor that shows selectivity toward large cations such as Ba^{2+} and La^{3+} ions [227]. The complex 11.Zn₃La has a single-helical structure in which the three salamo sites are occupied by zinc(II) ions (Fig. 9). The resulting six phenoxo oxygen atoms and the two terminal methoxy groups nicely surround the La^{3+} ion in the cavity. The helix winding angle of the tris(salamo) moiety in $11 \cdot Zn_3La$ from one methoxy group to the other is about 421°, which corresponds to a 1.2 turn helix [236].

The extended analogues, tetrakis- and pentakis(salamo) ligands (H_812 , $H_{10}13$), were also prepared [237] to obtain helices with a greater number of winding turns. The

Scheme 19 Ion recognition of Ba^{2+} and La^{3+} by acyclic tris(salamo) ligand H_611 in the presence of zinc(II) ions

Fig. 9 X-ray crystal structure of $11 \cdot Zn_3La$. The counter anions and solvent molecules are omitted. Reprinted with permission from Ref. [236]

complexation of the tetrakis(salamo) ligand H₈12 with zinc(II) acetate in the presence of a La³⁺ or Ba²⁺ ion gave a discrete metallohost–guest complex, $12 \cdot Zn_4G$ (G = La³⁺, Ba²⁺) (Scheme 20a), while other metals with a smaller size (Lu³⁺, Ca²⁺, etc.) did not lead to such a discrete species. The ¹H NMR spectral study showed that the pentanuclear complex $12 \cdot Zn_4La$ adopts a single-helical structure in which the *n*th benzene ring approximately lies on the (*n* + 3)th benzene ring. Such a complexation behavior of the tetrakis(salamo) ligand H₈12 is generally similar to that of the shorter analogue, the tris(salamo)

Scheme 20 Oligometal complexation of longer acyclic oligo(salamo) ligands H_812 , $H_{10}13$ with zinc(II) and guest metal ions

ligand H₆**11**. On the other hand, the complexation of the longer analogue, the pentakis(salamo) ligand H₁₀**13**, with zinc(II) and lanthanum(III) did not give a single discrete species (Scheme 20b). The **13**·Zn₅ structure was presumably formed upon the complexation, but the helical recognition site might have too many phenoxo oxygen atoms for a La³⁺ ion. Consequently, there should be a limit in the chain lengths of the acyclic oligo(salamo) ligands that can form a discrete Zn_nLa helical complex upon the complexation with zinc(II) and lanthanum(III) ions.

An alternative way of connecting multiple salamo units is to use a flexible linker. A bis(salamo) ligand H_414 in which the two salamo sites are connected with a diethyleneoxy linker was synthesized [238]. The conformational flexibility allows the molecule to adopt a variety of folded structures. The salamo sites can form a complex with d-block metals and the oxygen donor set consisting of diethylene glycol and phenoxo groups can coordinate to the group 1–3 metals.

The complexation of the ligand H_414 with 3 equiv of zinc(II) acetate afforded a crystalline hexanuclear complex 14_2Zn_6 (Scheme 21a). The complex has two

Scheme 21 Summary of oligometal complexation behavior of diethylene glycol-linked bis(salamo) ligand H₄14

 $[(Zn^{II}salamo)_2Zn^{II}]$ trinuclear cores doubly connected by the diethylene glycol linker. The structure of each [(Zn^{II}salamo)₂Zn^{II}] fragment is quite similar to that of [(Zn^{II}(3-MeOsalamo))₂Zn^{II}(OAc)₂] [89]. The two [(Zn^{II}sal $amo)_2Zn^{II}$ cores are related by a crystallographic inversion center. Thus, the complex 14_2Zn_6 has an achiral meso double helical structure (Fig. 10a). When the complexation with zinc(II) was carried out in the presence of an alkali metal ion $(K^+ \text{ or } Rb^+)$, a monomeric heterometal pentanuclear complex $14 \cdot Zn_4G$ (G = K⁺, Rb⁺) was obtained (Scheme 21b). The two salamo sites form a tetranuclear $[(Zn^{II}salamo)_2Zn^{II}_2(\mu-OH)_2]$ core containing two bridging hydroxo groups. Furthermore, five oxygen donor atoms including diethylene glycol and phenoxo groups form a cyclic array to surround the K⁺ or Rb⁺ ion. In these complexes, the ligand 14 adopts a folded Ω -shaped structure in which two terminal benzene rings are stacked on top of each other at a distance of 3.4 Å (Fig. 10b).

The complexation of the ligand H₄14 with zinc(II) and alkaline earth metal ions afforded a trinuclear complex $14 \cdot Zn_2G$ (G = Ca²⁺, Sr²⁺, Ba²⁺) (Scheme 21c). The two [Zn^{II}salamo] units coordinate to one alkaline earth metal ion (Ca²⁺, Sr²⁺, Ba²⁺) and the ligand 14 makes an S-shaped helical structure in which the two salamo arms are helically radiated from the diethylene glycol linker (Fig. 10c). Complexation of the ligand H₄14 with zinc(II) and lanthanides(III) also gave a trinuclear complex 14 ·Zn₂Ln (Ln = La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Eu³⁺, Gd³⁺) with a similar S-shaped helical structure. Some of these lanthanide(III) complexes exhibited a visible or near infrared luminescence. While the 14 ·Zn₂La showed a relatively

Fig. 10 Crystal structures of a 14_2 Zn₆, b 14·Zn₄K, c 14·Zn₂Ba, and d 14·Pd₂Ba Reprinted with permission from Ref. [238]

intense ligand-centered emission at 477 nm (quantum yield 2.3%), **14**·Zn₂Sm and **14**·Zn₂Nd showed an f–f emission in the visible and near infrared regions, respectively. The energy transfer from the **14**·Zn₂ moiety to the lanthanide(III) ion efficiently occurs. This significantly contrasts with the single-helical complexes **10**·Zn₂Ln (Ln = La³⁺–Lu³⁺), which did not exhibit a lanthanide(III) luminescence in the visible region [239]. The weaker emission of **10**·Zn₂Ln can be explained by the lower energy level of the excited state due to the terephthalaldehyde moiety, which is not sufficient for the efficient energy transfer to the lanthanide(III) ion such as Sm³⁺.

In addition to the group 1–3 metal ions, the d-block metals significantly affect the folding structure of **14**. Upon the complexation with palladium(II) as the d-block metal in the presence of Ba^{2+} ion, a heterometal trinuclear complex **14**·Pd₂Ba was obtained (Scheme 21d). The X-ray crystal-lographic analysis revealed that the two square planar palladium(II) ions are at the salamo coordination sites and that the Ba^{2+} ion is in the helical cavity surrounded by nine oxygen donors coming from the methoxy, phenoxo, and the diethylene glycol unit (Fig. 10d). Thus, the ligand **14** winds around the Ba^{2+} ion to make a single helix with more than one-turn (winding angle: 438°).

If there is a difference in the binding strengths to these metal ions, the metal exchange may take place with the conversion of the folding structures. From the metal exchange experiments, the affinity order was found to be $Zn^{2+} < Ba^{2+} \sim La^{3+}$ (in the O₉ site) and $Zn^{2+} < Pd^{2+}$ (in the N₂O₂ site). This affinity difference allows a multistep conversion among these folded structures; for example, from the meso double helical **14**₂Zn₆ to the S-shaped helical **14**₂Zn₂Ba and then to the single helical **14**₂Pd₂Ba.

Dynamic behavior and helicity control of helical metallohost-guest complexes

As described above, the acyclic oligo(salamo) ligands form a helical structure by the complexation with both d-block metals such as zinc(II) and hard guest ions such as the group 1–3 metals. There has been reported a number of metal-containing helical structures such as metal helicates [240–242], and one of the significant features of these complexes is the lability in coordination bonds. Consequently, dynamic structural changes of these helical oligo(salamo) complexes will take place via equilibration to give the most thermodynamically stable structure. In particular, dynamic helix inversion between the right- and left-handed forms is of interest because some of the important physical properties depend on the helical handedness.

Scheme 22 Helix inversion of helical complexes $15 \cdot Zn_2G$ between right- and left-handed forms

The helix inversion rates for the above mentioned helical oligo(salamo) metal complexes were investigated from the NMR spectral feature. The trinuclear complexes 10 Zn_2G (G = Ca²⁺, lanthanide) obtained from the bis(salamo) ligand H_410 described above undergo a fast helix inversion (Scheme 22) on the NMR timescale in CDCl₃/CD₃OD (1:1). This is evident from the fact that the diastereotopic protons of the OCH₂CH₂O moieties are observed as two equivalent signals [227]. The bis(salamo) ligand H₄10 has no chiral group so that the corresponding helical complexes 10.Zn₂G are racemic unless they are under chiral conditions. However, if an additional chiral auxiliary is introduced into an interconvertible enantiomer pair, the two isomers are no longer a pair of enantiomers, but diastereomers, whose equilibrium ratio in solution is not necessarily 1:1. Such a dynamic helicity control is one of the important features of the interconvertible helical metal complexes.

As the chiral auxiliary, the (S)-2-hydroxypropyl group, which can be derived from ethyl lactate, was introduced in the bis(salamo) scaffold. The helical heterotrinuclear complexes $15 \cdot Zn_2G$ (G = La³⁺, Ca²⁺, etc.) were prepared by the complexation of the ligand H_415 with zinc(II) and appropriate guest ions [243], in a manner similar to the achiral analogues 10 Zn₂G. A ¹H NMR spectroscopic study showed that the trinuclear complexes 15.Zn₂G undergo a fast helix inversion (Scheme 22) in CDCl₃/CD₃OD (1:1) at 293 K as observed for the achiral methoxy analogues 10-Zn₂G. However, the low-temperature NMR study clearly indicated the existence of two diastereomers, which can be assigned to the right- and left-handed helices. The diastereomeric ratio of 15.Zn₂Ca at 223 K is 80:20, demonstrating that one of the two isomers preferentially exists. The ΔG^{\neq} for the interconversion is estimated to be approximately 52 kJ/mol from the coalescence temperature. Since the diastereomeric ratios for the 15.Zn₂Y and **15**·Zn₂La at 223 K are 56:44 and 53:47, respectively, Ca^{2+} is the most effective for the helicity control among the Ca^{2+} , Y^{3+} , and La^{3+} ions.

In general, helix inversion less likely takes place when the helix winds more tightly or the helical turn increases. For examples, [5]helicene having a rigid helical structure easily undergoes helix inversion, but [6]helicene does not unless at a higher temperature [244–246]. In the case of the helical oligo(salamo) metal complexes, the intrinsic labile characters of the coordination bonds as well as the structural features may affect the helix inversion kinetics.

As described above, the tris(salamo) tetranuclear complexes 11 Zn₃G have a helical structure with a winding of more than one-turn, in which the two terminal benzene rings stack parallel on top of each other. Considering this structural feature, the helix inversion requires cleavage of some of the coordination bonds. The ¹H NMR spectroscopy showed that the barium complex 11.Zn₃Ba undergoes helix inversion on the NMR timescale in CDCl₃/CD₃OD (1:1) [236], but that the helix inversion of $11 \cdot Zn_3La$ is very slow even at 353 K in the same solvent (Scheme 23). Consequently, the helix inversion rate of 11.Zn₃G can be easily tuned by replacing the guest metal ion. This helix inversion rate of 11.Zn₃G is much slower than that of the shorter analogue, the trinuclear complex 10-Zn₂G. Therefore, the helix inversion rate mostly depends on the helix winding (ligand chain length) and on the intrinsic lability of the guest metal (La^{3+} , Ba^{2+} , etc.).

The helicity control for the tris(salamo) helical complexes have also been investigated using a chiral salen unit as the chiral auxiliary. This is based on the fact that [M(salen)] complexes having chiral groups can effectively induce a chiral distortion for excellent enantioselective catalytic organic reactions [11–13]. These kinds of chiral salen units were introduced in place of the salamo unit in the middle of the acyclic tris(salamo) framework, taking into consideration the reactivities of the imine and oxime C=N bonds. The ligands H₆**16a,b** were synthesized by the reaction of a mono-formyl salamo derivative with commercially available chiral diamines. The helical complexes $16a \cdot Zn_3La$ and $16b \cdot Zn_3La$ were prepared by the complexation of the ligands H_616a,b with zinc(II) and lanthanum(III). The ¹H NMR studies indicated the formation of two diastereomers (71:29 for diphenylethylene derivative $16a \cdot Zn_3La$ [247], 87:13 for cyclohexane derivative $16b \cdot Zn_3La$ [248]) in CDCl₃/CD₃OD (1:1) (Scheme 23). The chiral auxiliaries of H_616a,b are effective in making a difference in the thermodynamic stability of the two diastereomers and to obtain one of the isomers predominantly in solution.

In general, crystallization is a useful way to obtain one of the diastereomers in a pure form [249]. In the case of 16a Zn_3La having an (R,R)-diphenylethylene moiety, the pure left-handed isomer ((R,R,M) isomer) was isolated as crystals (Fig. 11a) from the 71:29 diastereomeric mixture [247]. This is reasonably explained by the assumption that the minor (R,R,P) isomer isomerized to the major (R,R,M) isomer maintaining the equilibrium in the mother liquor during the crystallization. This would be more probable than the major (R,R,M) isomer simply being crystallized without an equilibrium shift in the mother liquor. In fact, the equilibrium shift from 100:0 to the initial ratio 71:29 was observed upon dissolution of the obtained pure (R,R,M) isomer (Fig. 11b). This result clearly indicates that the complex 16a.Zn₃La undergoes a helix inversion in solution. From the NMR and CD spectral changes, the half-life of the isomerization was spectroscopically determined to be approximately 44 min at 295 K.

The complex $16a \cdot Zn_3La$ crystallizes in the tetragonal system, space group $P4_3$, which has a left-handed four-fold screw axis along the *c* axis. As a result, a left-handed

Scheme 23 Helix inversion and helicity control of tris(salamo) complexes $11 \cdot Zn_3G$ (G = Ba²⁺, La³⁺)

Fig. 11 a Superhelical structure formed in the crystal of $16a \cdot Zn_3La$; b CD spectral changes of $16a \cdot Zn_3La$ in solution after dissolving of the crystal in chloroform/methanol (1:1). Reprinted with permission from Ref. [247]

helical array of the left-handed helical complex is formed. This structure approximates a coiled-coil structure—a supramolecular superhelix—in the crystal lattice (Fig. 11a) [247]. Such a hierarchical *helix of helix* structure is found in biomolecules, such as supercoiled DNAs [250], coiled coil structures of proteins [251], or in synthetic helical polymers with a higher-ordered morphology [252, 253]. To the best of our knowledge, this is the first example of a coiled-coil structure formed by the folding and assembly of artificial flexible acyclic molecules.

In contrast to the diphenylethylene helical complex $16a \cdot Zn_3La$, crystallization of the tetranuclear complex $16b \cdot Zn_3La$ having a cyclohexanediamine moiety did not lead to isolation of one of the isomers. Instead, it crystallized as a mixture of the right- and left-handed isomers in a 1:1 ratio, and therefore the diastereomeric excess (87:13, de 74%) completely disappeared (de 0%) (Fig. 12a) [248]. In the crystal structure, the right- and left-handed isomers

Fig. 12 a Quasiracemate structure of the crystal of (R,R)-16b·Zn₃La; b CD spectral changes of (R,R)-16b·Zn₃La in solution after dissolving of the crystal in chloroform/methanol (1:1). Reprinted with permission from Ref. [248]

are almost mirror images of each other except for the R,Rcyclohexanediamine moiety. The packing of this crystal resembles the centrosymmetric space group C2/c, but the unit cell lacks the formal center of symmetry due to the chiral R.R-cyclohexanediamine moiety. Such a crystal consisting of a 1:1 mixture of two diastereomers being almost mirror images of each other is called a quasiracemate crystal [249]. Relatively fewer helical compounds or complexes are known to form such a quasiracemate crystal [254–260]. One of the important aspects of the complex 16b Zn₃La is that the diastereomeric ratio in solution (R,R,M isomer : R,R,P isomer = 87:13; de = 74%) is significantly different from that in the crystal (50:50; de = 0%). When the quasiracemate crystals of $16b \cdot Zn_3La$ are dissolved in chloroform/methanol (1:1), the diastereomeric ratio changed from 50:50 to the initial ratio 87:13, which corresponds to the de increase from 0 to 74% (Fig. 12b) [248]. Therefore, this phenomenon can be regarded as spontaneous enrichment of the left-handed helix from a racemic 1:1 mixture when we focus only on the helical chirality.

Whereas the true racemate crystals will not undergo the spontaneous enrichment of one of the enantiomers upon dissolution, the quasiracemate crystals generally undergo such an enrichment because the two isomers are diastereomers. However, it has been difficult to develop a system in which a crystalline 1:1 mixture changes into a single isomer by dissolution. There are two conflicting requirements; i.e., the small chiral auxiliary must effectively control the helical chirality in solution but behave like an achiral group during crystallization. The cyclohexane moiety of 16b Zn₃La worked well as a chiral group to stabilize one of the isomers in solution. Nevertheless, this cyclohexane group behaved like an achiral group during the crystallization to give quasiracemate crystals. In general, an enantiomer pair tends to crystallize as a racemate that is generally more tightly packed; this is known as an empirical rule, i.e., Wallach's rule [261, 262]. In the case of 16b·Zn₃La, the two isomers, which are no longer an enantiomer pair, can form quasiracemate crystals approximately according to the Wallach's rule, probably because the cyclohexane moiety is relatively small for the overall helical shape of the molecule.

New ligands by ring-closing olefin metathesis

As described above, cyclic and acyclic oligo(salamo) ligands exhibited the characteristic complexation behavior such as oligometal complexation and site-selective metal exchange. In general, the difference between the acyclic and cyclic ligands (or hosts) in the coordination behavior mainly arises from the preorganization of the coordinating atoms for the metal ions (macrocyclic effect). The stronger binding affinity and higher selectivity are usually achieved by taking advantage of the macrocyclic framework suitable for the guest species. Therefore, conversion from an acyclic structure to cyclic ones is expected to significantly change the metal complexation ability and selectivity of the oligo(salamo) ligands. Ring closing olefin metathesis (RCM) catalyzed by Ru complexes [263] is used as the key method for the conversion.

An acyclic bis(salamo) ligand H₄17 bearing two terminal allyl groups was designed and synthesized for this purpose [264]. Ring-closing metathesis of the two terminal olefins produced a macrocycle H_418 with a cis or trans olefinic moiety. In this conversion, it is important to selectively obtain the cis and trans isomers of the olefinic macrocycle H_4 **18**. The ring-closing olefin metathesis of the free ligand H₄17 afforded the macrocycle trans-H₄18 as the major product (cis/trans = 7:93) (Scheme 24a). The corresponding metal complexes 17.Zn₂G also underwent the ring-closing olefin metathesis and the cyclic product H₄18 was obtained after demetalation. It is reported that the use of a template metal changes the cis/trans selectivity in the crown ether synthesis based on the olefin metathesis [265]. The cis/trans ratio of the H_418 also significantly depends on the combination of the metal ions. Whereas the reaction of 17.Zn₃ or 17.Zn₂Ba afforded the trans isomer as the major product (cis/trans = 32:68and 24:76), the reaction of 17.Zn₂Ca exclusively gave the cis cyclic product *cis*-H₄**18** (Scheme 24b). The Zn₂Ca trimetallic core as an *oligometallic template* tightly fixes the allyl groups so that the macrocyclization produces a seven-membered metallacycle. However, the reaction of **17**·Zn₂La gave only the *cis*-H₄**18** as a cyclic product in low yield (5%) due to the side reactions. As a result, the olefin metathesis reactions of the free H₄**17** and its complex **17**·Zn₂Ca are effective for obtaining the trans and cis isomers, respectively. The saturated ligand H₄**19** was prepared by the hydrogenation of *trans*-H₄**18** using a Pd/C catalyst. Olefin metathesis was also used to obtain related macrocyclic tetrakis(salen) ligands via [2 + 2] macrocyclization [266].

The obtained cyclic ligands cis-H₄18, trans-H₄18, and H₄19 also have two peripheral salamo coordination sites and the central O₆ cavity as seen in the acyclic analogue H₄10 having methoxy groups. The structural differences in the organic moieties of these ligands lead to a different complexation behavior in the O₆ site. The complexation of the H₄L ligands (L = 17, *cis*-18, *trans*-18, 19) with zin-c(II) acetate (3 equiv) yielded the trinuclear complexes L·Zn₃ [267]. Contrary to the cooperative formation of the macrocyclic ligands H₄L (L = *cis*-18, *trans*-18, 19) showed a two-step feature, first giving the 2:3 complex (HL)₂Zn₃ and then the 1:3 complex L·Zn₃ (L = *trans*-18, 19) consisting of two molecules of the triply deprotonated

Scheme 24 Selective synthesis of cis and trans isomers of cyclic ligand H₄18 using the oligometallic template strategy

Scheme 25 Complexation of cyclic bis(salamo) ligands *cis*-18, *trans*-18, and 19 leading to $(HL)_2Zn_3$ and L- Zn_3 complexes. In the structural formulae, the counter anions and solvent molecules coordinating to the metal ions are omitted for clarity

ligand $(HL)^{3-}$ and three zinc(II) ions was determined by X-ray crystallographic analyses and spectroscopic studies. In the crystal structure, the two (HL)Zn units are held together by the third zinc(II) ion via the coordination of the catecholato moiety of each (HL)Zn unit. The structures of the three 1:3 complexes $L \cdot Zn_3$ (L = cis-18, *trans*-18, 19) are similar to each other.

The guest ion recognition behavior of the four trinuclear complexes $\mathbf{L}\cdot\mathbf{Zn}_3$ ($\mathbf{L} = \mathbf{17}$, *cis*-**18**, *trans*-**18**, **19**) based on a metal exchange was studied to clarify the ring effects and the structural effects of the linking olefinic moiety (Scheme 26; Table 4). As expected, four complexes $\mathbf{L}\cdot\mathbf{Zn}_3$ ($\mathbf{L} = \mathbf{17}$, *cis*-**18**, *trans*-**18**, **19**) showed a different binding behavior in the recognition of alkaline earth metal ions. The acyclic derivative $\mathbf{17}\cdot\mathbf{Zn}_3$ showed a \mathbf{Ca}^{2+} -selectivity, as observed for the methoxy derivative $\mathbf{10}\cdot\mathbf{Zn}_3$. The *cis*-**18**. \mathbf{Tas} -**18** remembers the best metal combination for the *oligometallic template* used in the macrocyclization. The X-ray crystallographic analysis of *cis*-**18**. \mathbf{Igand}

Table 4 Equilibrium constants for the metal exchange of trinuclear complexes $L{\cdot}Zn_3$

Guest	Trinuclear complex				
	$17 \cdot Zn_3$	cis-18·Zn ₃	trans-18·Zn ₃	19·Zn ₃	
La(NO ₃) ₃	>1000	>1000	>1000	>1000	
Mg(OAc) ₂	1.2	0.011	0.19	0.015	
Ca(OAc) ₂	100	>1000	0.20	400	
Ba(OAc) ₂	7	>1000	60	600	

Determined by ¹H NMR titration in CDCl₃/CD₃OD (1:1) (data cited from Ref. [267])

Scheme 26 Ion recognition of trinuclear complexes $L \cdot Zn_3$ based on metal exchange. The counter anions are not included for simplicity in the determination of equilibrium constants

Fig. 13 X-ray crystal structures of cis-18·Zn₂Ca and trans-18·Zn₂Ba

effectively coordinate to Ca^{2+} in the O₆ cavity (Fig. 13a). The structural feature is very similar to that of the acyclic 17.Zn₂Ca except for the terminal olefin moieties, confirming again that the Zn₂Ca oligometallic template can fix the two allyl groups at positions suitable for the ringclosing olefin metathesis. The metal exchange of cis-18 Zn₃ with Ba²⁺ also quantitatively took place, but the exchange with Mg²⁺ did not efficiently proceed. Consequently, the Ca^{2+}/Mg^{2+} or Ba^{2+}/Mg^{2+} selectivity significantly increased by the conversion of 17 to cis-18. On the contrary, *trans*-18·Zn₃ binds Ba^{2+} much stronger than Ca^{2+} or Mg²⁺. The Ca²⁺/Ba²⁺ selectivity is reversed from 13 to 1/300 by the conversion of the acyclic 17 to the trans-18. The restricted conformation of the ligand *trans*-18 with a longer trans-olefin linkage makes the cavity large enough to surround the larger Ba^{2+} ion (Fig. 13b). The binding behavior of the saturated analogue 19.Zn₃ was similar to that of cis-18 Zn₃. The flexible tetramethylene linker changes its conformation to suitably accommodate the guest. As a result, significant size selectivities are observed in the ion recognition of cis-18.Zn3, trans-18.Zn3, and 19.Zn₃ based on the metal exchange when alkaline earth metal ions are used as the guest. On the other hand, when La^{3+} was used as the guest, the metal exchange quantitatively occurred irrespective of the ligand structure. This is probably because the ion recognition based on the metal exchange is mainly governed by the electrostatic interaction between the guest metal and phenoxo oxygen atoms. This electrostatic interaction with the trivalent La^{3+} is strong enough to replace the divalent Zn^{2+} regardless of the structural difference in the three macrocycles.

Conclusion

Various kinds of salen-containing host molecules were designed for the development of new ion recognition systems. This molecular design is based on the *coordinating ability* of the [M(salen)] units, which are suitable for

chelate coordination to the group 1-3 metal ions. In particular, the integration of two or more salen-type coordination sites in a cyclic fashion is effective for the construction of the metallohosts. They showed a unique multi-metal complexation behavior due to the phenoxobridged structures. The peripheral salen-type coordination sites are suitable for binding to d-block transition metal ions, and the central O_6 (or larger) cavity is for the group 1-3 metals. Acyclic oligo(salen) molecules are also useful for the oligometal complexation. The metalation of the bis(salamo) ligand with zinc(II) afforded a trinuclear complex with a C-shaped structure, which can selectively recognize Ca²⁺ and lanthanide(III) ions via a unique metal exchange process. The longer oligo(salamo) ligands gave helical metal complexes when they formed a complex with the La^{3+} or Ba^{2+} ion in the presence of zinc(II) ions. The helix inversion behavior of the helical metal complexes due to the labile character of the coordination bonds has been successfully utilized for the dynamic helicity control. The transformation of the acyclic ligand bearing allyl groups into cyclic ones via olefin metathesis significantly changed the binding selectivity.

The integration of two or more salen-type coordination sites in a cyclic or helical arrangement is particularly effective for the oligometal complexation systems. The transformation of the oligo(salen)-type ligands into metallocyclic or metallohelical structures using the oligometal complexation will also be useful to achieve sophisticated functions, which originate from the intrinsic properties of the salen-metal complexes and from the integration of multiple metal complex units in close proximity.

Acknowledgment The author thanks the organizing committee of Host-Guest and Supramolecular Chemistry Society, Japan for giving him the HGCS Japan Award of Excellence 2010 and the opportunity to write this article. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). He especially thanks Prof. Tatsuya Nabeshima for his valuable suggestions and discussion about all the research on the novel ion recognition systems, Dr. Toshiyuki Saiki, Prof. Soichi Sato, Dr. Chusaku Ikeda, and Dr. Masaki Yamamura for their helpful suggestions and encouragement. He acknowledges Prof. Takayuki Kawashima and Prof. Kei Goto for allowing him to use X-ray diffractometer, Prof. Hiroki Oshio and Dr. Takuya Shiga for the magnetic measurements, Prof. Takashi Kajiwara for collaboration on single-molecule magnet, Dr. Kenji Yoza for X-ray structural analysis. He expresses his gratitude for all the members who have worked on the oligo(salamo) ion recognition systems and related projects. This article is selected for "HGCS Japan Award of Excellence 2010".

References

 Pfeiffer, P., Breith, E., Lübbe, E., Tsumaki, T.: Tricyclische orthokondensierte Nebenvalenzringe. Libegs Ann. Chem. 503, 84–130 (1933)

- Pfeiffer, P., Hesse, T., Pfitzner, H., Scholl, W., Thielert, H.: Innere Komplexsalze der Aldimin- und Azoreihe. J. Prakt. Chem. 149, 217–296 (1937)
- Marvel, C.S., Aspey, S.A., Dudley, E.A.: Quadridentate and sexadentate chelates. Some preliminary studies in their preparation and thermal stability. J. Am. Chem. Soc. 78, 4905–4909 (1956)
- Schaefer, W.P., Marsh, R.E.: Oxygen-carrying cobalt compounds. I. Bis(salicylaldehyde)ethylenediiminecobalt(II) monochloroformate. Acta Crystallogr. B25, 1675–1682 (1969)
- 5. Hall, D., Moore, F.H.: The crystal structure of *NN*'-Disalicylidene-ethylenediaminezinc(II) monohydrate. J. Chem. Soc. A 1822–1824 (1966)
- Scheringer, C., Hinkler, K., von Stackelberg, M.: Die Kristallstructur des Eisen(III)-Salicylaldehyd-äthylendiimin-chlorids. Z. Anorg. Allg. Chem. **306**, 35–38 (1960)
- Gerloch, M., Mabbs, F.E.: The crystal and molecular structure of chloro-(*NN*'-bis-salicylidene-ethylenediamine)iron(III) as a hexaco-ordinate dimer. J. Chem. Soc. A. 1900–1908 (1967)
- Pecoraro, V.L., Butler, W.M.: Structure of *N*,*N*[']-ethylenebis(salicylideneiminato)manganese(III) chloride acetonitrile solvate. Acta Crystallogr. C42, 1151–1154 (1986)
- Coggon, P., McPhail, A.T., Mabbs, F.E., Richards, A., Thornley, A.S.: Preparation, magnetic, and electronic spectral properties of some chromium(III)–*NN*′-ethylenebis(salicylideneiminato) complexes: Crystal and molecular structure of *NN*′-ethylenebis(salicylideneiminato)diaquochromium(III) chloride. J. Chem. Soc. A 3296–3303 (1970)
- Gilli, G., Cruickshank, D.W.J., Beddoes, R.L., Mills, O.S.: The crystal and molecular structure of dichloro-*N*,*N*[']-ethylenebis(salicylideneiminato)titanium(IV)-tetrahydrofuran. Acta Crystallogr. **B28**, 1889–1893 (1972)
- Jacobsen, E.N.: Asymmetric catalytic epoxidation of unfunctionalized olefins. In: Ojima, I. (ed.) Catalytic Asymmetric Synthesis, pp. 159–202. VCH, New York (1993)
- Katsuki, T.: Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysts. Coord. Chem. Rev. 140, 189–214 (1995)
- Jacobsen, E.N.: Asymmetric catalysis of epoxide ring-opening reactions. Acc. Chem. Res. 33, 421–431 (2000)
- 14. Tsou, T.-T., Loots, M., Halpern, J.: Kinetic determination of transition-metal–alkyl bond dissociation energies: application to organocobalt compounds related to B_{12} coenzymes. J. Am. Chem. Soc. **104**, 623–624 (1982)
- Summers, M.F., Marzilli, L.G., Bresciani-Pahor, N., Randaccio, L.: Unusual bond lengths, conformations, and ligand exchange rates in B₁₂ models with the bis(salicylidene)-*o*-phenylenediamine equatorial ligand. J. Am. Chem. Soc. **106**, 4478–4485 (1984)
- Di Bella, S., Fragalà, I.: Synthesis and second-order nonlinear optical properties of bis(salicylaldiminato)M(II) metalloorganic materials. Synth. Metals 115, 191–196 (2000)
- Lacroix, P.G.: Second-order optical nonlinearities in coordination chemistry: the case of bis(salicylaldiminato)metal Schiff base complexes. Eur. J. Inorg. Chem. 339–348 (2001)
- Hoshino, N.: Liquid crystal properties of metal-salicylaldimine complexes. Chemical modifications towards lower symmetry. Coord. Chem. Rev. 174, 77–108 (1998)
- Wezenberg, S.J., Kleij, A.W.: Material applications for salen frameworks. Angew. Chem. Int. Ed. 47, 2354–2364 (2008)
- 20. Kleij, A.W.: New templating strategies with salen scaffolds (Salen = N,N'-bis(salicylidene)ethylenediamine dianion). Chem. Eur. J. **14**, 10520–10529 (2008)
- Feltham, H.L.C., Brooker, S.: Ligands and polymetallic complexes derived from 1,4-diformyl-2,3-dihydroxybenzene and two close analogues. Coord. Chem. Rev. 253, 1458–1475 (2009)

- Kleij, A.W.: Zinc-centred salen complexes: versatile and accessible supramolecular building motifs. Dalton Trans. 4635–4639 (2009)
- Akine, S., Nabeshima, T.: Cyclic and acyclic oligo(N₂O₂) ligands for cooperative multi-metal complexation. Dalton Trans. 10395–10408 (2009)
- Sinn, E., Harris, C.M.: Schiff base metal complexes as ligands. Coord. Chem. Rev. 4, 391–422 (1969)
- Hobday, M.D., Smith, T.D.: N,N'-ethylenebis(salicylideneiminato) transition metal ion chelates. Coord. Chem. Rev. 9, 311–337 (1973)
- Sakamoto, M., Manseki, K., Okawa, H.: d–f Heteronuclear complexes: synthesis, structures and physicochemical aspects. Coord. Chem. Rev. 219–221, 379–414 (2001)
- Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. **104**, 2723–2750 (2004)
- Nabeshima, T.: Regulation of ion recognition by utilizing information at the molecular level. Coord. Chem. Rev. 148, 151–169 (1996)
- Van Veggel, F.C.J.M., Verboom, W., Reinhoudt, D.N.: Metallomacrocycles: supramolecular chemistry with hard and soft metal cations in action. Chem. Rev. 94, 279–299 (1994)
- Nabeshima, T., Akine, S., Saiki, T.: Pseudomacrocycles and pseudomacrobicycles as novel frameworks for multirecognition and regulation of molecular function. Rev. Heteroat. Chem. 22, 219–239 (2000)
- Nabeshima, T., Akine, S.: Functional supramolecular systems with highly cooperative and responding properties. Chem. Rec. 8, 240–251 (2008)
- Nabeshima, T., Akine, S., Ikeda, C., Yamamura, M.: Metallosupramolecular systems for synergistic functions based on unique arrangement of ligation sites. Chem. Lett. 39, 10–16 (2010)
- Nabeshima, T.: Construction of cooperative and responsive supramolecular systems for molecular functional modulation. Bull. Chem. Soc. Jpn. 83, 969–991 (2010)
- 34. Fabbrizzi, L., Licchelli, M., Rabaioli, G., Taglietti, A.: The design of luminescent sensors for anions and ionisable analytes. Coord. Chem. Rev. 205, 85–108 (2000)
- Robertson, A., Shinkai, S.: Cooperative binding in selective sensors, catalysts and actuators. Coord. Chem. Rev. 205, 157–199 (2000)
- Keefe, M.H., Benkstein, K.D., Hupp, J.T.: Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coord. Chem. Rev. 205, 201–228 (2000)
- Rogers, C.W., Wolf, M.O.: Luminescent molecular sensors based on analyte coordination to transition-metal complexes. Coord. Chem. Rev. 233–234, 341–350 (2002)
- Beer, P.D.: Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chem. Commun. 689–696 (1996)
- Beer, P.D.: Transition-metal receptor systems for the selective recognition and sensing of anionic guest species. Acc. Chem. Res. 31, 71–80 (1998)
- Beer, P.D., Cadman, J.: Electrochemical and optical sensing of anions by transition metal based receptors. Coord. Chem. Rev. 205, 131–155 (2000)
- Beer, P.D., Hayes, E.J.: Transition metal and organometallic anion complexation agents. Coord. Chem. Rev. 240, 167–189 (2003)
- Calderazzo, F., Floriani, C.: Reduction of *NN*[']-ethylenebis(salicylideneiminato)cobalt(II) and its conversion into a methyl derivative containing a direct cobalt–carbon bond. Chem. Commun. 139–140 (1967)

- Costa, G., Mestroni, G., Pellizer, G.: Reduction of cobalt chelates of bis(salicylaldehyde)ethylenediimine and synthesis of organocobalt derivatives. J. Organomet. Chem. 11, 333–340 (1968)
- 44. Fachinetti, G., Floriani, C., Zanazzi, P.F., Zanzari, A.R.: Bifunctional model complexes active in carbon dioxide fixation: synthesis and X-ray structure of bimetallic cobalt(I)–alkali cation–Schiff base complexes. Inorg. Chem. 18, 3469–3475 (1979)
- Gambarotta, S., Arena, F., Floriani, C., Zanazzi, P.F.: Carbon dioxide fixation: bifunctional complexes containing acidic and basic sites working as reversible carriers. J. Am. Chem. Soc. 104, 5082–5092 (1982)
- 46. Floriani, C., Calderazzo, F., Randaccio, L.: Crystal and molecular structure of a cationinc sodium complex: the sodium tetraphenylborate adduct of *NN'*-ethylenebis(salicylideneiminato)cobalt(II), cobalt(II), nickel(II), and copper(II) complexes of quadridentate Schiff bases as complexing agents for lithium, sodium, and ammonium cations. J. Chem. Soc. Chem. Commun. 384–385 (1973)
- Randaccio, L.: Crystal chemistry of d⁰ cations with Schiff-base metal complexes. I. The crystal and molecular structure of bis[*N*,*N*'-ethylene-bis(salicylideneiminato)cobalt(II)]-bis-tetrahydrofuran-sodium(I) tetraphenylborate. Gazz. Chim. Ital. **104**, 991–1002 (1974)
- Milburn, G.H.W., Truter, M.R., Vickery, B.L.: Crystal structure of a sodium complex, sodium perchlorate-bis[*NN*[']-ethylenebis(salicylideneiminato)copper(II)]. J. Chem. Soc. Chem. Commun. 1188 (1968)
- Milburn, H., Truter, M.R., Vickery, B.L.: Crystal structure of a sodium complex, bis-[*NN*'-ethylenebis(salicyclideniminato)copper(II)]perchloratosodium-*p*-xylene. J. Chem. Soc. Dalton Trans. 841–846 (1974)
- Gruber, S.J., Harris, C.M., Sinn, E.: Metal complexes as ligands—IV bi- and tri-nuclear complexes derived from metal complexes of tetradentate salicylaldimines. J. Inorg. Nucl. Chem. 30, 1805–1830 (1968)
- Bresciani-Pahor, N., Calligaris, M., Delise, P., Nardin, G., Randaccio, L., Zotti, E., Fachinetti, G., Floriani, C.: Quadridentate Schiff-base metal complexes as chelating ligands of alkali metals. Synthesis and structure of ammonium and sodium tetraphenylborate addition complexes with [*NN*'-ethylenebis(salicylideneiminato)]nickel(II). J. Chem. Soc. Dalton Trans. 2310– 2316 (1976)
- Armstrong, L.G., Lip, H.C., Lindoy, L.F., McPartlin, M., Tasker, P.A.: Alkali-metal salt adducts of nickel(II) complexes of quadridentate Schiff-base ligands. The X-ray structure of *NN*'ethylenebis(acetylacetoneiminato)nickel. J. Chem. Soc. Dalton Trans. 1771–1774 (1977)
- Bhattacharyya, B.C., Kabiraj, U.: Reactions of anionic nucleophiles with salicylaldimine nickel(II) complexes. Chem. Ind. 260–261 (1974)
- Skovsgaard, S., Bond, A.D., McKenzie, C.J.: Dipotassium hexakis({2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)) tetracyanonickelate(II) methanol hexasolvate dihydrate. Acta Crystallogr. E61, m135–m137 (2005)
- Giacomelli, A., Rotunno, T., Senatore, L.: Spectrophotometric study of the equilibrium between sodium tetraphenylborate and nickel(II) and cobalt(II) Schiff base complexes. Inorg. Chem. 24, 1303–1306 (1985)
- 56. Giacomelli, A., Rotunno, T., Senatore, L., Settambolo, R.: Spectrophotometric study of the equilibria between nickel(II) Schiff base complexes and ammonium-like cations or sodium tetraphenylborate. Inorg. Chem. 28, 3552–3555 (1989)
- 57. Gruber, S.J., Harris, C.M., Sinn, E.: Metal complexes as ligands-bi- and tri-nuclear complexes containing similar and

dissimilar metal atoms. Inorg. Nucl. Chem. Lett. 3, 495–499 (1967)

- Carbonaro, L., Isola, M., La Pegna, P., Senatore, L., Marchetti, F.: Spectrophotometric study of the equilibria between nickel(II) Schiff-base complexes and alkaline earth or nickel(II) cations in acetonitrile solution. Inorg. Chem. 38, 5519–5525 (1999)
- Banerjee, A.K., Mahapatra, B., Roy, S.K.: Metal complexes as ligands. Polynuclear alkaline earth metal complexes with copper(II)- and nickel(II)-salicylaldimines. J. Indian Chem. Soc. 62, 778–780 (1985)
- Condorelli, G., Fragalà, I., Giuffrida, S., Cassol, A.: Lanthanide compounds with Schiff bases and with copper(II) Schiff base complexes as ligands. Z. Anorg. Allg. Chem. 412, 251–257 (1975)
- 61. Harrison, D.W., Bünzli, J.-C.: Polynuclear complexes of 3d and 4f transition metals. Synthesis and structure of lanthanide(III) adducts with copper and nickel Schiff's base complexes as ligands. Inorg. Chim. Acta 109, 185–192 (1985)
- 62. Manseki, K., Shimizu, Y., Obata, A., Sakiyama, H., Unoura, K., Sakamoto, M., Nishida, Y., Sadaoka, Y., Okawa, H.: Electrochemical studies for interaction between [Cu(salen)] and La(III) ion in *N*,*N*-dimethylformamide. Chem. Lett. 1256–1257 (2001)
- Bencini, A., Benelli, C., Caneschi, A., Carlin, R.L., Dei, A., Gatteschi, D.: Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions. J. Am. Chem. Soc. **107**, 8128–8136 (1985)
- 64. Bencini, A., Benelli, C., Caneschi, A., Dei, A., Gatteschi, D.: Crystal and molecular structure and magnetic properties of a trinuclear complex containing exchange-coupled GdCu₂ species. Inorg. Chem. 25, 572–575 (1986)
- 65. Kahn, M.L., Rajendiran, T.M., Jeannin, Y., Mathonière, C., Kahn, O.: Ln^{III}Cu^{II} Schiff base compounds (Ln = Ce, Gd, Tb, Dy, Ho, Er): structural and magnetic properties. C. R. Acad. Sci. Paris, Ser. IIc **3**, 131–137 (2000)
- 66. Gao, T., Sun, W.-B., Yan, P.-F., Li, G.-M., Hou, G.-F.: [μ-N,N'-Bis(2-oxidobenzylidene)-1,2-ethanediamine](methanol)trinitratocopper(II)europium(III). Acta Crystallogr. E63, m2201– m2202 (2007)
- Bi, W., Wei, T., Lü, X., Hui, Y., Song, J., Zhao, S., Wong, W.-K., Jones, R.A.: Hetero-trinuclear near-infrared (NIR) luminescent Zn₂Ln complexes from salen-type Schiff-base ligands. New J. Chem. **33**, 2326–2334 (2009)
- Wei, T., Zhao, S., Bi, W., Lü, X., Hui, Y., Song, J., Wong, W.-K., Jones, R.A.: Co-existence of heterometallic Zn₂Er and ZnEr arrayed chromophores for the sensitization of near-infrared (NIR) luminescence. Inorg. Chem. Commun. **12**, 1216–1219 (2009)
- 69. Hui, Y., Feng, W., Wei, T., Lü, X., Song, J., Zhao, S., Wong, W.-K., Jones, R.A.: Adjustment of coordination environment of Ln³⁺ ions to modulate near-infrared luminescent properties of Ln³⁺ complexes. Inorg. Chem. Commun. **14**, 200–204 (2011)
- Makarevich, A.M., Kardashev, S.V., Grigor'ev, A.N., Kuz'mina, N.P.: Formation of heterometallic compounds in mixed solutions of nickel(II)–Schiff base complexes and lanthanide nitrates: electrospray ionization mass spectrometry data. Russ. J. Inorg. Chem. 53, 1476–1483 (2008)
- Ramade, I., Kahn, O., Jeannin, Y., Robert, F.: Design and magnetic properties of a magnetically isolated Gd^{III}Cu^{II} pair. Crystal structures of [Gd(hfa)₃Cu(salen)], [Y(hfa)₃Cu(salen)], [Gd(hfa)₃Cu(salen)(Meim)], and [La(hfa)₃(H₂O)Cu(salen)] [hfa = hexafluoroacetylacetonato, salen = N,N[']-ethylenebis(salicylideneaminato), Meim = 1-methylimidazole]. Inorg. Chem. **36**, 930–936 (1997)
- Ryazanov, M., Nikiforov, V., Lloret, F., Julve, M., Kuzmina, N., Gleizes, A.: Magnetically isolated Cu^{II}Gd^{III} pairs in the sereis [Cu(acacen)Gd(pta)₃], [Cu(acacen)Gd(hfa)₃], [Cu(salen)Gd(hfa)₃],

[acacen = N,N'-ethylenebis(acetylacetoniminate(-)), salen = N,N'-ethylenebis(salicylideneiminate(-)), hfa = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(-), pta = 1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionate(-)]. Inorg. Chem. **41**, 1816–1823 (2002)

- 73. Pointillart, F., Bernot, K.: Determination of the nature of exchange interaction in the 3d–4f magnetic chain {[Cu(sa-len)Pr(hfac)_3]_2(L)}_n (L = 4,4'-bipyridine, pyrazine). Eur. J. Inorg. Chem. 952–964 (2010)
- 74. Gleizes, A., Julve, M., Kuzmina, N., Alikhanyan, A., Lloret, F., Malkerova, I., Sanz, J. L., Senocq, F.: Heterobimetallic *d-f* metal complexes as potential single-source precursors for MOCVD: structure and thermodynamic study of the sublimation of [Ni(salen)Ln(hfa)₃], Ln = Y, Gd. Eur. J. Inorg. Chem. 1169–1174 (1998)
- 75. Hasegawa, Y., Saitou, S., Tamaki, S., Yajima, H., Tadokoro, M.: Effects of zinc(II) on the luminescence of europium(III) in complexes containing β -diketone and *Schiff* bases. Helv. Chim. Acta **92**, 2565–2575 (2009)
- 76. Kato, M., Muto, Y., Jonassen, H.B., Imai, K., Tokii, T.: Spectral and magnetic studies on bi- and tri-nuclear complexes derived from copper(II) complexes with tetradentate Schiff base and one of the chlorides, nitrates and perchlorates of copper(II), nickel(II), cobalt(II) and zinc(II). Bull. Chem. Soc. Jpn. 43, 1066–1078 (1970)
- 77. Bear, C.A., Waters, J.M., Waters, T.N.: Crystal and molecular structure of the tetranuclear copper complex di-µ-chloro-bis{chloro [*NN'*-ethylenebis(salicylideneiminato)copper(II)]copper(II)}. J. Chem. Soc. Dalton Trans. 1059–1062 (1974)
- Epstein, J.M., Figgis, B.N., White, A.H., Willis, A.C.: Crystal structures of two trinuclear Schiff-base copper(II) complexes. J. Chem. Soc. Dalton Trans. 1954–1961 (1974)
- 79. Leslie, K.A., Drago, R.S., Stucky, G.D., Kitko, D.J., Breese, J.A.: Complexes as ligands. 2. Structural, spectral, and magnetic properties of the bimetallomer formed from *N*,*N*[']-ethylenebis(salicylideniminato)copper(II) and bis(hexafluoroacetylacetonato)copper(II). Inorg. Chem. **18**, 1885–1891 (1979)
- 80. Fukuhara, C., Tsuneyoshi, K., Katsura, K., Matsumoto, N., Kida, S., Mori, M.: Linear tetranuclear copper(II) complexes with bridging methoxide and a Schiff-base ligand: the preparation and magnetic study of the [Cu(salpd- μ -O,O')(μ -L)Cu(μ -CH₃O)₂Cu(μ -L)(salpd- μ -O,O')Cu] complexes (and L = acetate or formate ions) and the structure determination of the complex with L = acetate. Bull. Chem. Soc. Jpn. **62**, 3939–3943 (1989)
- O'Bryan, N.B., Maier, T.O., Paul, I.C., Drago, R.S.: Complexes as ligands. Structure and metal exchange of β-diketonate– Schiff's base adducts containing copper(II) and cobalt(II). J. Am. Chem. Soc. **95**, 6640–6645 (1973)
- Gerli, A., Hagen, K.S., Marzilli, L.G.: Nuclearity and formulation of SALPN²⁻ complexes formed from M(O₂CCH₃)₂: resolution of longstanding problems by X-ray crystallography. Inorg. Chem. **30**, 4673–4676 (1991)
- Ülkü, D., Ercan, F., Atakol, O., Dinçer, F.N.: Bis{(µ-acetato)[µ-bis(salicylidene)-1,3-propanediaminato](dimethyl sulfoxide)-nickel(II)}nickel(II). Acta Crystallogr. C53, 1056–1057 (1997)
- Atakol, O., Arici, C., Ercan, F., Ülkü, D.: Bis{(µ-acetato)[µ-bis(salicylidene)-1,3-propanediaminato]copper(II)}copper(II) dioxane solvate. Acta Crystallogr. C55, 511–513 (1999)
- Atakol, O., Aksu, M., Ercan, F., Arici, C., Tahir, M.N., Ülkü, D.: A linear trinuclear Cd^{II}–Cd^{II}–Cd^{II} complex with a μ-acetato bridge: bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato]-cadmium(II)}cadmium(II). Acta Crystallogr. C55, 1072–1075 (1999)
- Ülkü, D., Tatar, L., Atakol, O., Aksu, M.: Bis{(μ-acetato)[μ-bis(salicylidene)-1,3-propanediaminato]zinc(II)}zinc(II). Acta Crystallogr. C57, 273–274 (2001)

- Reglinski, J., Morris, S., Stevenson, D.E.: Supporting conformational change at metal centres. Part 1: octahedral systems. Polyhedron 21, 2167–2174 (2002)
- Reglinski, J., Morris, S., Stevenson, D.E.: Supporting conformational change at metal centres. Part 2: four and five coordinate geometry. Polyhedron 21, 2175–2182 (2002)
- Akine, S., Taniguchi, T., Nabeshima, T.: Cooperative formation of trinuclear zinc(II) complexes via complexation of a tetradentate oxime chelate ligand, salamo, and zinc(II) acetate. Inorg. Chem. 43, 6142–6144 (2004)
- You, Z.-L., Zhu, H.-L., Liu, W.-S.: A linear trinuclear Co^{II}–Co^{II}–Co^{II} complex with μ-acetate bridges: di-μ-acetato-bis[μ-N,N'-bis(salicylidene)-1,4-butanediaminato]tricobalt(II). Acta Crystallogr. E60, m1900–m1902 (2004)
- Ma, J.-L., You, Z.-L., Zhu, H.-L.: Di-μ₂-acetato-bis[μ₂-N,N'bis(salicylidene)-butane-1,4-diaminato]trimanganese(II). Acta Crystallogr. E61, m1286–m1288 (2005)
- Akine, S., Nabeshima, T.: Novel thiosalamo ligand as a remarkably stable N₂S₂ salen-type chelate and synthesis of a nickel(II) complex. Inorg. Chem. 44, 1205–1207 (2005)
- Durmuş, S., Ateş, B.M., Atakol, O., Ercan, F.: Synthesis and crystal structure of a homotrinuclear Ni(II) complex. Z. Kristallogr. 220, 973–976 (2005)
- 94. Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M., Mori, M.: Synthesis and characterization of trinuclear Schiff-base complexes containing sulphur dioxide or hydrogensulphite ions as bridging groups. Crystal structure of [Zn{(μ-CH₃CO₂)(salpd-μ-O,O')Cu}₂] [salpd = propane-1,3-diylbis(salicylideneiminate)]. J. Chem. Soc. Dalton Trans. 3473– 3479 (1990)
- Ülkü, D., Tahir, M.N., Atakol, O., Nazir, H.: Bis{(µ-acetato)[µ-bis(salicylidene)-1,3-propanediaminato](N,N-dimethylformamide)nickel(II)}cadmium(II). Acta Crystallogr. C53, 872–874 (1997)
- 96. Tahir, M.N., Ülkü, D., Atakol, O., Çakirer, O.: Bis[μ-N,N'bis(salicylidene)-1,3-propanediaminato]bis(dimethylformamide) di(μ-nitrito)copper(II)dinickel(II)–dimethylformamide (1/2). Acta Crystallogr. **C54**, 468–470 (1998)
- Ercan, F., Atakol, O.: A linear trinuclear Ni^{II}–Mn^{II}–Ni^{II} complex with a μ-acetato bridge: bis{(μ-acetato)[μ-bis(salicylid-ene)-1,3-propanediaminato](N,N-dimethylformamide)nickel(II)} manganese(II). Acta Crystallogr. **C54**, 1268–1270 (1998)
- Ercan, F., Ülkü, D., Atakol, O., Dinçer, F.N.: Bis{(µ-acetato)[µ-bis(salicylidene)-1,3-propanediaminato]copper(II)}cadmium(II) dioxane solvate. Acta Crystallogr. C54, 1787–1790 (1998)
- Ülkü, D., Tatar, L., Atakol, O., Durmuş, S.: Bis{(µ-nitrato)[µ-bis(salicylidene)-1,3-propanediaminato]copper(II)}zinc(II). Acta Crystallogr. C55, 1652–1654 (1999)
- 100. Yang, X., Jones, R.A., Wong, W.-K.: Anion dependant selfassembly and the first X-ray structure of a neutral homoleptic lanthanide salen complex Tb₄(salen)₆. Chem. Commun. 3266–3268 (2008)
- 101. Yang, X., Jones, R.A., Rivers, J.H., Wong, W.-K.: Syntheses, structures, and photoluminescence of 1-D lanthanide coordination polymers. Dalton Trans. 10505–10510 (2009)
- 102. Cunningham, D., Gallagher, J.F., Higgins, T., McArdle, P., McGinley, J., Sheerin, D.: A new co-ordinating role for a metal salicylaldimine. J. Chem. Soc. Chem. Commun. 959–961 (1990)
- Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: A genuine example of a discrete bimetallic (Cu, Gd) complex: structural determination and magnetic properties. Inorg. Chem. 35, 2400–2402 (1996)
- 104. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: A general route to strictly dinuclear Cu(II)/Ln(III) complexes. Structural determination and magnetic behavior of two Cu(II)/Gd(III) complexes. Inorg. Chem. 36, 3429–3433 (1997)

- 105. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: Experimental evidence of a ferromagnetic ground state (S = 9/2) for a dinuclear Gd(III)–Ni(II) complex. Inorg. Chem. 36, 4284–4286 (1997)
- 106. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: Nature of the magnetic interaction in the (Cu²⁺, Ln³⁺) pairs: an empirical approach based on the comparison between homologous (Cu²⁺, Ln³⁺) and (Ni²⁺_{LS}, Ln³⁺) complexes. Chem. Eur. J. **4**, 1616–1620 (1998)
- 107. Costes, J.-P., Dahan, F., Dupuis, A.: Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX₃·nH₂O complexes (LH₂ standing for tetradentate Schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N₃C₂, and CF₃COO). Inorg. Chem. **39**, 165–168 (2000)
- Costes, J.-P., Dahan, F., Donnadieu, B., Garcia-Tojal, J., Laurent, J.-P.: Versatility of the nature of the magnetic gadolinium(III)-vanadium(IV) interaction—structure and magnetic properties of two heterobinuclear [Gd, V(O)] complexes. Eur. J. Inorg. Chem. 363–365 (2001)
- 109. Costes, J.-P., Clemente-Juan, J.M., Dahan, F., Dumestre, F., Tuchagues, J.-P.: Dinuclear (Fe^{II}, Gd^{III}) complexes deriving from hexadentate Schiff bases: synthesis, structure, and mössbauer and magnetic properties. Inorg. Chem. **41**, 2886–2891 (2002)
- 110. Margeat, O., Lacroix, P.G., Costes, J.-P., Donnadieu, B., Lepetit, C., Nakatani, K.: Synthesis, structures, and physical properties of copper(II)–gadolinium(III) complexes combining ferromagnetic coupling and quadratic nonlinear optical properties. Inorg. Chem. 43, 4743–4750 (2004)
- Elmali, A., Elerman, Y.: Crystal structure and magnetic properties of a novel Cu^{II}Nd^{III} heterodinuclear Schiff base complex. Z. Naturforsch. **59b**, 530–534 (2004)
- 112. Elmali, A., Elerman, Y.: Magnetic properties and structure of a Cu^{II}Dy^{III} heterodinuclear Schiff base complex. J. Mol. Struct. 737, 29–33 (2005)
- 113. Akine, S., Matsumoto, T., Taniguchi, T., Nabeshima, T.: Synthesis, structures, and magnetic properties of tri- and dinuclear copper(II)–gadolinium(III) complexes of linear oligooxime ligands. Inorg. Chem. 44, 3270–3274 (2005)
- 114. Gao, T., Yan, P.-F., Li, G.-M., Hou, G.-F., Gao, J.-S.: N,N'-Ethylene-bis(3-methoxysalicylideneimine) mononuclear (4f) and heterodinuclear (3d–4f) metal complexes: synthesis, crystal structure and luminescent properties. Inorg. Chim. Acta 361, 2051–2058 (2008)
- 115. Kajiwara, T., Takahashi, K., Hiraizumi, T., Takaishi, S., Yamashita, M.: Coordination enhancement of single-molecule magnet behavior of Tb(III)–Cu(II) dinuclear systems. Polyhedron 28, 1860–1863 (2009)
- 116. Kharchenko, A.V., Makarevich, A.M., Grigor'ev, A.N., Sorokina, N.M., Lysenko, K.A., Kuz'mina, N.P.: Deposition of thin films of neodymium and samarium nickelates from heterometallic coordination compounds by centrifugation. Doklady Chem. **426**, 124–127 (2009)
- 117. Şenyüz, N., Yüksektepe, Ç., Bati, H., Çalışkan, N., Büyükgüngör, O.: Synthesis, crystal structure properties of {μ-nitrato-[N,N'-ethylene-bis(3-methoxysalicylideneimin) diaqua nitrato Cu(II)La(III)]nitrat}. J. Chem. Crystallogr. **40**, 989–992 (2010)
- 118. Gao, T., Yan, P.-F., Li, G.-M., Zhang, J.-W., Sun, W.-B., Suda, M., Einaga, Y.: Correlations between structure and magnetism of three N,N'-ethylene-bis(3-methoxysalicylideneimine) gadolinium complexes. Solid State Sci. 12, 597–604 (2010)
- 119. Costes, J.-P., Dahan, F., Dupuis, A., Laurent, J.-P.: Structural studies of a dinuclear (Cu, Gd) and two trinuclear (Cu₂, Ln) complexes (Ln = Ce, Er). Magnetic properties of two original (Cu, Gd) complexes. New J. Chem. 1525–1529 (1998)

- 120. Wong, W.-K., Liang, H., Wong, W.-Y., Cai, Z., Li, K.-F., Cheah, K.-W.: Synthesis and near-infrared luminescence of 3d– 4f bi-metallic Schiff base complexes. New J. Chem. 26, 275–278 (2002)
- 121. Costes, J.-P., Laussac, J.-P., Nicodème, F.: Complexation of a Schiff base ligand having two coordination sites (N_2O_2 and O_2O_2) with lanthanide ions (Ln = La, Pr): an NMR study. J. Chem. Soc. Dalton Trans. 2731–2736 (2002)
- 122. Yang, X., Jones, R.A., Lynch, V., Oye, M.M., Holmes, A.L.: Synthesis and near infraread luminescence of a tetrametallic Zn_2Yb_2 architecture from a trinuclear Zn_3L_2 Schiff base complex. Dalton Trans. 849–851 (2005)
- 123. Yang, X., Jones, R.A., Wu, Q., Oye, M.M., Lo, W.-K., Wong, W.-K., Holmes, A.L.: Synthesis, crystal structures and antennalike sensitization of visible and near infrared emission in heterobimetallic Zn–Eu and Zn–Nd Schiff base compounds. Polyhedron 25, 271–278 (2006)
- 124. Lo, W.-K., Wong, W.-K., Wong, W.-Y., Guo, J., Yeung, K.-T., Cheng, Y.-K., Yang, X., Jones, R.A.: Heterobimetallic Zn(II)– Ln(III) phenylene-bridged Schiff base complexes, computational studies, and evidence for singlet energy transfer as the main pathway in the sensitization of near-infrared Nd³⁺ luminescence. Inorg. Chem. **45**, 9315–9325 (2006)
- 125. Bi, W.-Y., Lü, X.-Q., Chai, W.-L., Song, J.-R., Wong, W.-Y., Wong, W.-K., Jones, R.A.: Construction and NIR luminescent property of hetero-bimetallic Zn–Nd complexes from two chiral salen-type Schiff-base ligands. J. Mol. Struct. **891**, 450–455 (2008)
- 126. Akine, S., Utsuno, F., Taniguchi, T., Nabeshima, T.: Dinuclear complexes of the N_2O_2 oxime chelate ligand with zinc(II)–lan-thanide(III) as a selective sensitization system for Sm³⁺. Eur. J. Inorg. Chem. 3143–3152 (2010)
- 127. Costes, J.-P., Donnadieu, B., Gheorghe, R., Novitchi, G., Tuchagues, J.-P., Vendier, L.: Di- or Trinuclear 3d–4f Schiff base complexes: the role of anions. Eur. J. Inorg. Chem. 5235–5244 (2008)
- 128. Lo, W.-K., Wong, W.-K., Guo, J., Wong, W.-Y., Li, K.-F., Cheah, K.-W.: Synthesis, structures and luminescent properties of new heterobimetallic Zn–4f Schiff base complexes. Inorg. Chim. Acta 357, 4510–4521 (2004)
- 129. Wong, W.-K., Yang, X., Jones, R.A., Rivers, J.H., Lynch, V., Lo, W.-K., Xiao, D., Oye, M.M., Holmes, A.L.: Multinuclear luminescent Schiff-base Zn–Nd sandwich complexes. Inorg. Chem. 45, 4340–4345 (2006)
- 130. Zhao, S., Lü, X., Hou, A., Wong. W.-Y., Wong, W.-K., Yang, X., Jones, R.A.: Heteronuclear trimetallic and 1D polymeric 3d– 4f Schiff base complexes with OCN⁻ and SCN⁻ ligands. Dalton Trans. 9595–9602 (2009)
- 131. Wang, H., Zhang, D., Ni, Z.-H., Li, X., Tian, L., Jiang, J.: Synthesis, crystal structures, and luminescent properties of phenoxo-bridged heterometallic trinuclear propeller- and sandwich-like Schiff-base complexes. Inorg. Chem. 48, 5946–5956 (2009)
- 132. Akine, S., Taniguchi, T., Nabeshima, T.: Heterometallic Zn₂La and ZnLu complexes formed by site-selective transmetalation of a dimeric homotrinuclear zinc(II) complex. Chem. Lett. **35**, 604–605 (2006)
- 133. Cunningham, D., McArdle, P., Mitchell, M., Ní Chonchubhair, N., O'Gara, M., Franceschi, F., Floriani, C.: Adduct formation between alkali metal ions and divalent metal salicylaldimine complexes having methoxy substituents. A structural investigation. Inorg. Chem. **39**, 1639–1649 (2000)
- Xiao, H.-Q., Zhang, H.: {μ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis-(nitrilomethylidyne)]diphenolato-1κ⁴O⁶,O¹,O¹,O^{6'}:2κ⁴O¹,N,N'O¹}-(methanol-1κO(perchlorato-1κO)-copper(II)sodium(I). Acta Crystallogr. E65, m445 (2009)

- 135. Xiao, H.-Q.: {μ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-1κ⁴O⁶,O¹,O¹,O⁶':2κ⁴O¹,N,N'O¹}-(methanol-1κO(perchlorato-1κO)-nickel(II)sodium. Acta Crystallogr. **E65**, 400 (2009)
- Bian, J.: {μ-6,6'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato}methanolcopper(II)sodium(I). Acta Crystallogr. E64, 625 (2008)
- 137. Fellah, F.Z.C., Costes, J.-P., Dahan, F., Duhayon, C., Tuchagues, J.-P.: Varying the metal/metal ratio in related Cu–Ca complexes. Polyhedron 26, 4209–4215 (2007)
- 138. Chai, W.-L., Jin, W.-J., Lü, X.-Q., Bi, W.-Y., Song, J.-R., Wong, W.-K., Bao, F.: Formation and luminescence of 1D helical polymeric excimer from Pt-MeO-salen precursor. Inorg. Chem. Commun. 11, 699–702 (2008)
- 139. Lü, X., Wong, W.-Y., Wong, W.-K.: Self-assembly of luminescent platinum-salen Schiff-base complexes. Eur. J. Inorg. Chem. 523–528 (2008)
- 140. Branzea, D.G., Guerri, A., Fabelo, O., Ruiz-Pérez, C., Chamoreau, L.-M., Sangregorio, C., Caneschi, A., Andruh, M.: Heterobinuclear complexes as tectons in designing coordination polymers. Cryst. Growth Des. 8, 941–949 (2008)
- 141. Yang, X., Jones, R.A.: Anion dependent self-assembly of "Tetra-Decker" and "Triple-Decker" luminescent Tb(III) salen complexes. J. Am. Chem. Soc. 127, 7686–7687 (2005)
- 142. Yang, X., Hahn, B.P., Jones, R.A., Wong, W.-K., Stevenson, K.J.: Synthesis of an octanuclear Eu(III) cage from Eu₄²⁺: chloride anion encapsulation, luminescence, and reversible MeOH adsorption via a porous supramolecular architecture. Inorg. Chem. 46, 7050–7054 (2007)
- 143. Sanmartín, J., Bermejo, M.R., García-Deibe, A.M., Llamas-Saiz, A.L.: Unusual high nuclearity and pseudo-tetrahedral Zn₈O₁₃ core found in a self-assembled complex. Chem. Commun. 795–796 (2000)
- 144. Sanmartín, J., Bermejo, M.R., García-Deibe, A.M., Rivas, I.M., Fernández, A.R.: Zinc and cadmium complexes with versatile hexadentate Schiff base ligands. The supramolecular selfassembly of a 3-D cage-like complex. J. Chem. Soc. Dalton Trans. 4174–4181 (2000)
- 145. Akine, S., Dong, W., Nabeshima, T.: Octanuclear zinc(II) and cobalt(II) clusters produced by cooperative tetrameric assembling of oxime chelate ligands. Inorg. Chem. 45, 4677–4684 (2006)
- 146. Van Staveren, C.J., Fenton, D.E., Reinhoudt, D.N., van Eerden, J., Harkema, S.: Cocomplexation of urea and UO2²⁺ in a Schiff base macrocycle: a mimic of an enzyme binding site. J. Am. Chem. Soc. **109**, 3456–3458 (1987)
- 147. Van Staveren, C.J., van Eerden, J., van Veggel, F.C.J.M., Harkema, S., Reinhoudt, D.N.: Cocomplexation of neutral guests and electrophilic metal cations in synthetic macrocyclic hosts. J. Am. Chem. Soc. **110**, 4994–5008 (1988)
- 148. Van Veggel, F.C.J.M., Harkema, S., Bos, M., Verboom, W., van Staveren, C.J., Gerritsma, G.J., Reinhoudt, D.N.: Metallomacrocycles: synthesis, X-ray structure, electrochemistry, and ESR spectroscopy of mononuclear and heterodinuclear complexes. Inorg. Chem. 28, 1133–1148 (1989)
- 149. Van Veggel, F.C.J.M., Harkema, S., Bos, M., Verboom, W., Klein Woolthuis, G., Reinhoudt, D.N.: Incorporation of N–O bonds in metallomacrocycles: synthesis, X-ray structure, and electrochemistry of hetero-dinuclear complexes. J. Org. Chem. 54, 2351–2359 (1989)
- Nijenhuis, W.F., van Doorn, A.R., Reichwein, A.M., de Jong, F., Reinhoudt, D.N.: Urea transport by macrocyclic carriers through a supported liquid membrane. J. Am. Chem. Soc. 113, 3607–3608 (1991)
- 151. Van Doorn, A.R., Schaafstra, R., Bos, M., Harkema, S., van Eerden, J., Verboom, W., Reinhoudt, D.N.: molecular

recognition of polar neutral molecules by metallomacrocycles: synthesis, ¹H NMR spectroscopy, X-ray structure, electrochemistry, and ab initio calculations. J. Org. Chem. **56**, 6083–6094 (1991)

- 152. Horwitz, C.P., Ciringh, Y.: Synthesis and electrochemical properties of oxo-bridged manganese dimers incorporating alkali and alkaline earth cations. Inorg. Chim. Acta 225, 191– 200 (1994)
- 153. Casellato, U., Tamburini, S., Tomasin, P., Vigato, P.A.: Preparation, properties and X-ray structure of a cyclic compartmental Schiff base and related complexes containing d- or f-metal ions. Inorg. Chim. Acta 262, 117–121 (1997)
- 154. Brianese, N., Casellato, U., Tamburini, S., Tomasin, P., Vigato, P.A.: Asymmetric compartmental macrocyclic ligands and related mononuclear and hetero-dinuclear complexes with dand/or f-metal ions. Inorg. Chim. Acta 293, 178–194 (1999)
- 155. Arion, V.B., Wignacourt, J.P., Conflant, P., Drache, M., Lagrenee, M., Cousin, O., Vezin, H., Ricart, G., Joppek, W., Klein, H.-W.: New metallomacrocyclic complexes based on acetamidrazone. Inorg. Chim. Acta **303**, 228–237 (2000)
- 156. Cassol, A., Di Bernardo, P., Zanonato, P.L., Tamburini, S., Tomasin, P., Vigato, P.A.: New complexes of ditopic ligands with "d" and/or "s" metal ions. Supramol. Chem. 13, 469–488 (2001)
- 157. Caneschi, A., Sorace, L., Casellato, U., Tomasin, P., Vigato, P. A.: d- or f-Mononuclear and related heterodinuclear complexes with [1 + 1] asymmetric compartmental macrocycles. Eur. J. Inorg. Chem. 3887–3900 (2004)
- 158. Van Veggel, F.C.J.M., Bos, M., Verboom, W., Reinhoudt, D.N.: Electrochemical reduction of benzyl chloride catalyzed by a hetero-dinuclear complex. Recl. Trav. Chim. Pays-Bas 109, 515–517 (1990)
- Martinez, A., Hemmert, C., Meunier, B.: A macrocyclic chiral manganese(III) Schiff base complex as an efficient catalyst for the asymmetric epoxidation of olefins. J. Catal. 234, 250–255 (2005)
- Martinez, A., Hemmert, C., Gornitzka, H., Meunier, B.: Synthesis and activity of macrocyclized chiral Mn(III)–Schiff-base epoxidation catalysts. J. Organomet. Chem. 690, 2163–2171 (2005)
- 161. Martinez, A., Hemmert, C., Loup, C., Barré, G., Meunier, B.: Synthesis of new macrocyclic chiral manganese(III) Schiff bases as catalysts for asymmetric epoxidation. J. Org. Chem. 71, 1449–1457 (2006)
- 162. Liu, R., Liu, I.Y., Bi, X., Thompson, R.F., Doctrow, S.R., Malfroy, B., Baudry, M.: Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl. Acad. Sci. USA 100, 8526–8531 (2003)
- 163. Pilkington, N.H., Robson, R.: Complexes of binucleating ligands. Aust. J. Chem. 23, 2225–2236 (1970)
- 164. Guerriero, P., Tamburini, S., Vigato, P.A.: From mononuclear to polynuclear macrocyclic or macroacyclic complexes. Coord. Chem. Rev. 139, 17–243 (1995)
- 165. Okawa, H., Furutachi, H., Fenton, D.E.: Heterodinuclear metal complexes of phenol-based compartmental macrocycles. Coord. Chem. Rev. **174**, 51–75 (1998)
- 166. Vigato, P.A., Tamburini, S.: The challenge of cyclic and acyclic Schiff bases and related derivatives. Coord. Chem. Rev. 248, 1717–2128 (2004)
- 167. Vigato, P.A., Tamburini, S.: Advances in acyclic compartmental ligands and related complexes. Coord. Chem. Rev. 252, 1871–1995 (2008)
- 168. Reichwein, A.M., Verboom, W., Reinhoudt, D.N.: Binaphthyl metallomacrocycles for complexation of neutral molecules. Recl. Trav. Chim. Pays-Bas 112, 358–366 (1993)

- 169. Reichwein, A.M., Verboom, W., Reinhoudt, D.N.: Functionalized binaphthyl salophen crown ethers as models for the enzyme urease. Recl. Trav. Chim. Pays-Bas 112, 595–607 (1993)
- 170. Van Veggel, F.C.J.M., Noorlander-Bunt, H.G., Jorgensen, W.L., Reinhoudt, D.N.: Preorganized metallomacrocycles: improved binding and selectivity of NH₃ over primary amines. J. Org. Chem. **63**, 3554–3559 (1998)
- 171. Reichwein, A.M., Verboom, W., Harkema, S., Spek, A.L., Reinhoudt, D.N.: Calix salophen crown ethers as receptors for neutral molecules. J. Chem. Soc. Perkin Trans. 2, 1167–1172 (1994)
- 172. Rudkevich, D.M., Verboom, W., Brzozka, Z., Palys, M.J., Stauthamer, W.P.R.V., van Hummel, G.J., Franken, S.M., Harkema, S., Engbersen, J.F.J., Reinhoudt, D.N.: Functionalized UO₂ salenes: neutral receptors for anions. J. Am. Chem. Soc. **116**, 4341–4351 (1994)
- Rudkevich, D.M., Verboom, W., Reinhoudt, D.N.: Calix[4]arene salenes: a bifunctional receptor for NaH₂PO₄. J. Org. Chem. 59, 3683–3686 (1994)
- 174. Rudkevich, D.M., Mercer-Chalmers, J.D., Verboom, W., Ungaro, R., de Jong, F., Reinhoudt, D.N.: Bifunctional recognition: simultaneous transport of cations and anions through a supported liquid membrane. J. Am. Chem. Soc. **117**, 6124–6125 (1995)
- 175. Bassetti, M., Calenne, A., Mastrofrancesco, L., Salamone, M., Bocelli, G., Cantoni, A., Musatti, A.: Synthesis and characterization of a novel heteroditopic macrocyclic system—monometallic nickel(II) and uranyl complexes and their corresponding heterobimetallic carbonylrhodium(I) complexes. Eur. J. Inorg. Chem. 914–925 (2006)
- 176. Yoon, I., Goto, M., Shimizu, T., Lee, S.S., Asakawa, M.: Synthesis and characterisation of macrocyclic palladium(II)– sodium(I) complexes: generation of an unusual metal-mediated electron delocalisation. Dalton Trans. 1513–1515 (2004)
- 177. Yoon, I., Narita, M., Shimizu, T., Asakawa, M.: Threadingfollowed-by-shrinking protocol for the synthesis of a [2]rotaxane incorporating a Pd(II)-salophen moiety. J. Am. Chem. Soc. 126, 16740–16741 (2004)
- 178. Yoon, I., Narita, M., Goto, M., Shimizu, T., Asakawa, M.: Synthesis of a [2]rotaxane incorporating a Ni(II)–salen moiety: evidence of ring-opening-and-closing protocol. Org. Lett. 8, 2341–2344 (2006)
- 179. Van Veggel, F.C.J.M., Bos, M., Harkema, S., Verboom, W., Reinhoudt, D.N.: The organization of two "soft" (Cu²⁺, Ni²⁺) metal centers in heterotrinuclear complexes of a macrocyclic ligand by cocomplexation with Ba²⁺. Angew. Chem. Int. Ed. Engl. **28**, 746–748 (1989)
- 180. Van Veggel, F.C.J.M., Bos, M., Harkema, S., van de Bovenkamp, H., Verboom, W., Reedijk, J., Reinhoudt, D.N.: Macrocyclic trinucleating ligands for the cocomplexation of two "soft" (Cu^{2+} , Ni^{2+} , or Zn^{2+}) metal centers and one "hard" (Ba^{2+} or Cs^+) metal center. J. Org. Chem. **56**, 225–235 (1991)
- 181. Gao, F., Ruan, W.-J., Chen, J.-M., Zhang, Y.-H., Zhu, Z.-A.: Spectroscopy, NMR and DFT studies on molecular recognition of crown ether bridged chiral heterotrinuclear salen Zn(II) complex. Spectrochim. Acta 62, 886–895 (2005)
- Akine, S., Utsuno, F., Nabeshima, T.: Highly efficient regulation of cation recognition and promotion of self-assembly by metalation of a macrocyclic bis(N₂O₂) ligand with nickel(II). Chem. Commun. 46, 1029–1031 (2010)
- Pedersen, C.J.: Crystalline salt complexes of macrocyclic polyethers. J. Am. Chem. Soc. 92, 386–391 (1970)
- 184. Pecoraro, V.L., Stemmler, A.J., Gibney, B.R., Bodwin, J.J., Wang, H., Kampf, J.W., Barwinski, A.: Metallacrowns: a new class of molecular recognition agents. In: Karlin, K.D. (ed.)

Progress in Inorganic Chemistry, vol. 45, pp. 83–177. Wiley, New York (1997)

- Bodwin, J.J., Cutland, A.D., Malkani, R.G., Pecoraro, V.L.: The development of chiral metallacrowns into anion recognition agents and porous materials. Coord. Chem. Rev. 216–217, 489–512 (2001)
- Huck, W.T.S., van Veggel, F.C.J.M., Reinhoudt, D.N.: Synthesis of new macrocyclic ligands for hetero-multinuclear transition-metal complexes. Recl. Trav. Chim. Pays-Bas 114, 273–276 (1995)
- 187. Akine, S., Taniguchi, T., Nabeshima, T.: Synthesis and crystal structure of a novel triangular macrocyclic molecule, tris(H₂saloph), and its water complex. Tetrahedron Lett. 42, 8861–8864 (2001)
- 188. Rowan, S.J., Cantrill, S.J., Cousins, G.R.L., Sanders, J.K.M., Stoddart, J.F.: Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002)
- Akine, S., Hashimoto, D., Saiki, T., Nabeshima, T.: Synthesis and structure of polyhydroxyl rigid triangular nano-macrocyclic imine having multiple hydrogen-bonding sites. Tetrahedron Lett. 45, 4225–4227 (2004)
- 190. Kwit, M., Zabicka, B., Gawronski, J.: Synthesis of chiral largering triangular salen ligands and structural characterization of their complexes. Dalton Trans. 6783–6789 (2009)
- 191. Ma, C., Lo, A., Abdolmaleki, A., MacLachlan, M.J.: Synthesis and metalation of novel fluorescent conjugated macrocycles. Org. Lett. 6, 3841–3844 (2004)
- 192. Ma, C.T.L., MacLachlan, M.J.: Supramolecular assembly and coordination-assisted deaggregation of multimetallic macrocycles. Angew. Chem. Int. Ed. 44, 4178–4182 (2005)
- 193. Boden, B.N., Hui, J.K.-H., MacLachlan, M.J.: Social and antisocial [3 + 3] Schiff base macrocycles with isomeric backbones. J. Org. Chem. **73**, 8069–8072 (2008)
- 194. Gallant, A.J., MacLachlan, M.J.: Ion-induced tubular assembly of conjugated Schiff-base macrocycles. Angew. Chem. Int. Ed. 42, 5307–5310 (2003)
- 195. Gallant, A.J., Patrick, B.O., MacLachlan, M.J.: Mild and selective reduction of imines: formation of an unsymmetrical macrocycle. J. Org. Chem. 69, 8739–8744 (2004)
- 196. Gallant, A.J., Hui, J.K.-H., Zahariev, F.E., Wang, Y.A., Mac-Lachlan, M.J.: Synthesis, structure, and computational studies of soluble conjugated multidentate macrocycles. J. Org. Chem. 70, 7936–7946 (2005)
- 197. Nabeshima, T., Miyazaki, H., Iwasaki, A., Akine, S., Saiki, T., Ikeda, C., Sato, S.: Efficient formation of homo and hetero metal clusters by triangular trisaloph ligand as a partial template. Chem. Lett. 35, 1070–1071 (2006)
- 198. Gallant, A.J., Chong, J.H., MacLachlan, M.J.: Heptametallic bowl-shaped complexes derived from conjugated Schiff-base macrocycles: synthesis, characterization, and X-ray crystal structures. Inorg. Chem. 45, 5248–5250 (2006)
- 199. Frischmann, P.D., MacLachlan, M.J.: Capsule formation in novel cadmium cluster metallocavitands. Chem. Commun. 4480–4482 (2007)
- 200. Nabeshima, T., Miyazaki, H., Iwasaki, A., Akine, S., Saiki, T., Ikeda, C.: Multi-metal complexation and partially templated synthesis of metal clusters by using triangular trisaloph ligands. Tetrahedron 63, 3328–3333 (2007)
- 201. Frischmann, P.D., Facey, G.A., Ghi, P.A., Gallant, A.J., Bryce, D.L., Lelj, F., MacLachlan, M.J.: Capsule formation, carboxylate exchange, and DFT exploration of cadmium cluster metallocavitands: highly dynamic supramolecules. J. Am. Chem. Soc. 132, 3893–3908 (2010)
- 202. Frischmann, P.D., Gallant, A.J., Chong, J.H., MacLachlan, M.J.: Zinc carboxylate cluster formation in conjugated

metallomacrocycles: evidence for templation. Inorg. Chem. 47, 101–112 (2008)

- 203. Akine, S., Sunaga, S., Taniguchi, T., Miyazaki, H., Nabeshima, T.: Core/shell oligometallic template synthesis of macrocyclic hexaoxime. Inorg. Chem. 46, 2959–2961 (2007)
- Akine, S., Taniguchi, T., Nabeshima, T.: Synthesis and characterization of novel ligands 1,2-bis(salicylideneaminooxy)ethanes. Chem. Lett. 682–683 (2001)
- 205. Akine, S., Taniguchi, T., Dong, W., Masubuchi, S., Nabeshima, T.: Oxime-based salen-type tetradentate ligands with high stability against imine metathesis reaction. J. Org. Chem. **70**, 1704– 1711 (2005)
- 206. Korpela, T.K., Mäkelä, M.J.: Spectrophotometric measurement of hydroxylamine and its *O*-alkyl derivatives. Anal. Biochem. 110, 251–257 (1981)
- 207. McKee, V., Shepard, W.B.: X-ray structural analysis of a tetramanganese(II) complex of a new (4×4) Schiff-base macrocycle incorporating a cubane-like Mn₄(alkoxy)₄ Core. J. Chem. Soc. Chem. Commun. 158–159 (1985)
- 208. Bell, M., Edwards, A.J., Hoskins, B.F., Kachab, E.H., Robson, R.: Synthesis and crystal structure of a complex of a tetranucleating macrocyclic ligand which binds four Ni^{II} ions in a square arrangement with a μ_4 -hydroxo group at the centre. J. Chem. Soc. Chem. Commun. 1852–1853 (1987)
- 209. McKee, V., Tandon, S.S.: The X-ray crystal structure and some properties of a planar tetracopper(II) macrocyclic complex containing a μ_4 -hydroxo bridge. J. Chem. Soc., Chem. Commun. 385–387 (1988)
- Asato, E., Furutachi, H., Kawahashi, T., Mikuriya, M.: Polynuclear zinc(II) complexes of phenol–imine and –amine macrocycles. J. Chem. Soc. Dalton Trans. 3897–3904 (1995)
- 211. Hoskins, B.F., Robson, R., Smith, P.: Synthesis and crystal structure of a complex in which a single macrocyclic ligand binds six Cu^{II} centres in a cylohexane boat arrangement. J. Chem. Soc. Chem. Commun. 488–489 (1990)
- 212. Tandon, S.S., Thompson, L.K., Bridson, J.N.: A novel antiferromagnetically coupled, dimeric, dodecanuclear copper(II) complex involving two macrocyclic ligands each with a 'benzene-like' arrangement of six copper centres. J. Chem. Soc. Chem. Commun. 911–913 (1992)
- 213. Saalfrank, R.W., Löw, N., Hampel, F., Stachel, H.-D.: The first metallacrown ether sandwich complex. Angew. Chem. Int. Ed. Engl. 35, 2209–2210 (1996)
- 214. Saalfrank, R.W., Löw, N., Kareth, S., Seitz, V., Hampel, F., Stalke, D., Teichert, M.: Crown ethers, double-decker, and sandwich complexes: cation-mediated formation of metallatopomer coronates. Angew. Chem. Int. Ed. **37**, 172–175 (1998)
- 215. Akine, S., Sunaga, S., Nabeshima, T.: Multistep oligometal complexation of the macrocyclic tris(N₂O₂) hexaoxime ligand. Chem. Eur. J. 17, 6853–6861 (2011)
- 216. Yamashita, A., Watanabe, A., Akine, S., Nabeshima, T., Nakano, M., Yamamura, T., Kajiwara, T.: Wheel-shaped Er^{III}Zn^{II}₃ single-molecule magnet: a macrocyclic approach to designing magnetic anisotropy. Angew. Chem. Int. Ed. **50**, 4016–4019 (2011)
- 217. Feltham, H.L.C., Lan, Y., Klöwer, F., Ungur, L., Chibotaru, L.F., Powell, A.K., Brooker, S.: A non-sandwiched macrocyclic monolanthanide single-molecule magnet: the key role of axiality. Chem. Eur. J. 17, 4362–4365 (2011)
- Dai, Y., Katz, T.J., Nichols, D.A.: Synthesis of a helical conjugated ladder polymer. Angew. Chem. Int. Ed. Engl. 35, 2109–2111 (1996)
- Zhang, H.-C., Huang, W.-S., Pu, L.: Biaryl-based macrocyclic and polymeric chiral (salophen)Ni(II) complexes: synthesis and spectroscopic study. J. Org. Chem. 66, 481–487 (2001)

- 220. Furusho, Y., Maeda, T., Takeuchi, T., Makino, N., Takata, T.: A rational design of helix: absolute helix synthesis by binaphthylsalen fusion. Chem. Lett. 1020–1021 (2001)
- 221. Zhang, F., Bai, S., Yap, G.P.A., Tarwade, V., Fox, J.M.: Abiotic metallofoldamers as electrochemically responsive molecules. J. Am. Chem. Soc. **127**, 10590–10599 (2005)
- 222. Dong, Z., Karpowicz Jr., R.J., Bai, S., Yap, G.P.A., Fox, J.M.: Control of absolute helicity in single-stranded abiotic metallofoldamers. J. Am. Chem. Soc. **128**, 14242–14243 (2006)
- 223. Dong, Z., Yap, G.P.A., Fox, J.M.: trans-cyclohexane-1,2-diamine is a weak director of absolute helicity in chiral nickelsalen complexes. J. Am. Chem. Soc. **129**, 11850–11853 (2007)
- 224. Akine, S., Taniguchi, T., Nabeshima, T.: Novel synthetic approach to trinuclear 3d–4f complexes: specific exchange of the central metal of a trinuclear zinc(II) complex of a tetraoxime ligand with a lanthanide(III) ion. Angew. Chem. Int. Ed. 41, 4670–4673 (2002)
- 225. Akine, S., Taniguchi, T., Nabeshima, T.: Acyclic bis(N₂O₂ chelate) ligand for trinuclear d-block homo- and heterometal complexes. Inorg. Chem. 47, 3255–3264 (2008)
- 226. Hunter, C.A., Anderson, H.L.: What is cooperativity? Angew. Chem. Int. Ed. 48, 7488–7499 (2009)
- 227. Akine, S., Taniguchi, T., Saiki, T., Nabeshima, T.: Ca²⁺- and Ba²⁺-selective receptors based on site-selective transmetalation of multinuclear polyoxime-zinc(II) complexes. J. Am. Chem. Soc. **127**, 540–541 (2005)
- Akine, S., Taniguchi, T., Nabeshima, T.: Helical metallohost– guest complexes via site-selective transmetalation of homotrinuclear complexes. J. Am. Chem. Soc. 128, 15765–15774 (2006)
- Atkins, A.J., Black, D., Blake, A.J., Marin-Becerra, A., Parsons, S., Ruiz-Ramirez, L., Schröder, M.: Schiff-base compartmental macrocyclic complexes. Chem. Commun. 457–464 (1996)
- 230. Furutachi, H., Fujinami, S., Suzuki, M., Okawa, H.: Dinuclear $\text{Co}^{\text{II}}\text{M}^{\text{II}}$ (M = Pb or Co) complexes having a "Co(salen)" entity in a macrocyclic framework: ligand modulation effect and neighboring metal(II) effect upon oxygenation at the "Co(salen)" center. J. Chem. Soc. Dalton Trans. 2761–2769 (2000)
- 231. Yonemura, M., Arimura, K., Inoue, K., Usuki, N., Ohba, M., Okawa, H.: Coordination-position isomeric M^{II}Cu^{II} and Cu^{II}M^{II} (M = Co, Ni, Zn) complexes derived from macrocyclic compartmental ligands. Inorg. Chem. **41**, 582–589 (2002)
- 232. Tsien, R.Y.: New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404 (1980)
- 233. Suzuki, K., Watanabe, K., Matsumoto, Y., Kobayashi, M., Sato, S., Siswanta, D., Hisamoto, H.: Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion-sensing component for an ion-selective electrode. Anal. Chem. 67, 324–334 (1995)
- 234. Akine, S., Akimoto, A., Shiga, T., Oshio, H., Nabeshima, T.: Synthesis, stability, and complexation behavior of isolable salen-type N₂S₂ and N₂SO lignads based on thiol and oxime functionalities. Inorg. Chem. **47**, 875–885 (2008)
- Akine, S., Akimoto, A., Nabeshima, T.: Synthesis of Ag⁺-selective dipalladium(II) metallohost based on *O*-alkyloxime bis(N₂SO) ligands. Phosphorus Sulfur Silicon Relat. Elem. 185, 1000–1007 (2010)
- Akine, S., Taniguchi, T., Matsumoto, T., Nabeshima, T.: Guestdependent inversion rate of a tetranuclear single metallohelicate. Chem. Commun. 4961–4963 (2006)
- 237. Akine, S., Matsumoto, T., Sairenji, S., Nabeshima, T.: Synthesis of acyclic tetrakis- and pentakis(N₂O₂) ligands for single-helical

heterometallic complexes with a greater number of winding turns. Supramol. Chem. 23, 106–112 (2011)

- 238. Akine, S., Morita, Y., Utsuno, F., Nabeshima, T.: Multiple folding structures mediated by metal coordination of acyclic multidentate ligand. Inorg. Chem. 48, 10670–10678 (2009)
- Akine, S., Utsuno, F., Nabeshima, T.: Visible and near-infrared luminescence of helical zinc(II)-lanthanide(III) trinuclear complexes having acyclic bis(N₂O₂) oxime ligand. IOP Conf. Ser.: Mater. Sci. Eng. 1, 012009 (2009)
- Constable, E.C.: Oligopyridines as helicating ligands. Tetrahedron 48, 10013–10059 (1992)
- 241. Lehn, J.-M.: Supramolecular Chemistry, Concepts and Perspectives. Wiley-VCH, Weinheim (1995)
- 242. Piguet, C., Bernardinelli, G., Hopfgartner, G.: Helicates as versatile supramolecular complexes. Chem. Rev. **97**, 2005–2062 (1997)
- 243. Akine, S., Taniguchi, T., Nabeshima, T.: Chiral single-stranded metallohelix: metal-mediated folding of linear oligooxime ligand. Tetrahedron Lett. 47, 8419–8422 (2006)
- 244. Martin, R.H.: Die Helicene. Angew. Chem. 86, 727-738 (1974)
- Martin, R.H., Marchant, M.-J.: Thermal racemisation of [6], [7],
 [8] and [9]helicene. Tetrahedron Lett. 35, 3707–3708 (1972)
- 246. Martin, R.H., Marchant, M.J.: Thermal racemisation of hepta-, octa-, and nonahelicene. kinetic results, reaction path and experimental proofs that the racemisation of hexa- and heptahelicene does not involve an intramolecular double Diels–Alder reaction. Tetrahedron **30**, 347–349 (1974)
- 247. Akine, S., Matsumoto, T., Nabeshima, T.: Spontaneous formation of a chiral supramolecular superhelix in the crystalline state using a single-stranded tetranuclear metallohelicate. Chem. Commun. 4604–4606 (2008)
- 248. Akine, S., Hotate, S., Matsumoto, T., Nabeshima, T.: Spontaneous enrichment of one-handed helices by dissolution of quasiracemic crystals of a tetranuclear single helical complex. Chem. Commun. 47, 2925–2927 (2011)
- Brands, K.M.J., Davies, A.J.: Crystallization-induced diastereomer transformations. Chem. Rev. 106, 2711–2733 (2006)
- 250. Bauer, W.R., Crick, F.H.C., White, J.H.: Supercoiled DNA. Sci. Am. 243, 118–133 (1980)
- Gruber, M., Lupas, A.N.: Historical review: another 50th anniversary–new periodicities in coiled coils. Trends Biochem. Sci. 28, 679–685 (2003)
- 252. Akagi, K.: Hyperstructured polyacetylene. Polym. Int. 56, 1192–1199 (2007)
- 253. George, S.J., Ajayaghosh, A., Jonkheijm, P., Schenning, A.P.H.J., Meijer, E.W.: Coiled-coil gel nanostructures of oligo(*p*-phenylenevinylene)s: gelation-induced helix transition in a higher-order supramolecular self-assembly of a rigid π-conjugated system. Angew. Chem. Int. Ed. **43**, 3422–3425 (2004)
- 254. Baum, G., Constable, E.C., Fenske, D., Housecroft, C.E., Kulke, T.: Solvent control in the formation of mononuclear and dinuclear double-helical silver(I)-2,2':6',2"-terpyridine complexes. Chem. Commun. 2659–2660 (1998)
- 255. Baum, G., Constable, E.C., Fenske, D., Housecroft, C.E., Kulke, T.: Chiral 1,2-ethanediyl-spaced quaterpyridines give a library of cyclic and double helicates with copper(I). Chem. Commun. 195–196 (1999)
- 256. Saalfrank, R.W., Maid, H., Hampel, F., Peters, K.: Coordination polymers, 14. 1D- and 2D-coordination polymers from selfcomplementary building blocks: co-crystallization of (*P*)- and (*M*)-single-stranded diastereoisomers. Eur. J. Inorg. Chem. 1859–1867 (1999)
- 257. Baum, G., Constable, E.C., Fenske, D., Housecroft, C.E., Kulke, T., Neuburger, M., Zehnder, M.: Regio- and diastereo-selective formation of dicopper(I) and disilver(I) double helicates with

chiral 6-substituted 2,2':6',2"-terpyridines. J. Chem. Soc. Dalton Trans. 945–959 (2000)

- 258. Jiang, H., Dolain, C., Léger, J.-M., Gornitzka, H., Huc, I.: Switching of chiral induction in helical aromatic oligoamides using solid state–solution state equilibrium. J. Am. Chem. Soc. 126, 1034–1035 (2004)
- 259. Dolain, C., Jiang, H., Léger, J.-M., Guionneau, P., Huc, I.: Chiral induction in quinoline-derived oligoamide foldamers: assignment of helical handedness and role of steric effects. J. Am. Chem. Soc. **127**, 12943–12951 (2005)
- 260. Wiznycia, A.V., Desper, J., Levy, C.J.: Monohelical iron(II) and zinc(II) complexes of a (1*R*,2*R*)-cyclohexyl salen ligand with benz[*a*]anthryl sidearms. Inorg. Chem. 45, 10034–10036 (2006)
- 261. Wallach, O.: Zur Kenntniss der Terpene und der ätherischen Oele. Justus Liebigs Ann. Chem. 286, 90–118 (1895)
- 262. Brock, C.P., Schweizer, W.B., Dunitz, J.D.: On the validity of Wallach's rule: on the density and stability of racemic crystals compared with their chiral counterparts. J. Am. Chem. Soc. 113, 9811–9820 (1991)

- 263. Grubbs, R.H.: Olefin metathesis. Tetrahedron **60**, 7117–7140 (2004)
- 264. Akine, S., Kagiyama, S., Nabeshima, T.: Oligometallic template strategy for ring-closing olefin metathesis: highly cis- and transselective synthesis of a 32-membered macrocyclic tetraoxime. Inorg. Chem. 46, 9525–9527 (2007)
- Marsella, M.J., Maynard, H.D., Grubbs, R.H.: Template-directed ring-closing metathesis: synthesis and polymerization of unsaturated crown ether analogs. Angew. Chem. Int. Ed. Engl. 36, 1101–1103 (1997)
- 266. Haak, R.M., Castilla, A.M., Belmonte, M.M., Escudero-Adán, E.C., Benet-Buchholz, J., Kleij, A.J.: Access to multinuclear salen complexes using olefin metathesis. Dalton Trans 40, 3352–3364 (2011)
- Akine, S., Kagiyama, S., Nabeshima, T.: Modulation of multimetal complexation behavior of tetraoxime ligand by covalent transformation of olefinic functionalities. Inorg. Chem. 49, 2141–2152 (2010)